www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Berechnung v. Wahrscheinlichk.
Berechnung v. Wahrscheinlichk. < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung v. Wahrscheinlichk.: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 15:58 Fr 27.05.2005
Autor: Back-Up

Hallo,

[mm] \mu [/mm] = 3
[mm] \sigma [/mm] = 2

Ohne Werte:
[mm] P(|X-\mu| \le [/mm] c)
= [mm] \Phi (\bruch{c}{\sigma})-\Phi (-\bruch{c}{\sigma}) [/mm]
= [mm] \Phi (\bruch{c}{\sigma})-|1-\Phi (\bruch{c}{\sigma})| [/mm]
= [mm] 2*\Phi (\bruch{c}{\sigma})-1 [/mm]

Werte eingesetzt:
P(|X-3| [mm] \le [/mm] 0,5)
= [mm] 2*\Phi (\bruch{0,5}{2})-1 [/mm]
= [mm] 2*\Phi [/mm] (0,25)-1
= 0,1974

Ich kann die Rechnung ohne Werte bereits nicht nachvollziehen. Kann da jemand Licht ins Dunkle bringen? Gleich die 1. Zeile mit dem Gleichheitszeichen ist mir unverständlich. Ist c=0,5 beliebig oder muss das 0,5 sein, wenn [mm] \mu [/mm] und [mm] \sigma [/mm] gegeben sind?

Verstanden habe ich folgende Rechnung:
P(X [mm] \le [/mm] x) = [mm] \Phi (\bruch{x-\mu}{\sigma}) [/mm]


Gruß

        
Bezug
Berechnung v. Wahrscheinlichk.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Fr 27.05.2005
Autor: Julius

Hallo Back-Up!

Also, $c [mm] \ge [/mm] 0$ ist hier beliebig.

Ich schreibe es mal ausführlicher auf, vielleicht wird es dir ja dann klarer:

[mm] $P(|X-\mu| \le [/mm] c)$

$=P(-c [mm] \le X-\mu \le [/mm] c)$

[mm] $=P(X-\mu \le [/mm] c) - [mm] P(X-\mu [/mm] < -c)$

[mm] $=P(X-\mu \le [/mm] c) - P(X- [mm] \mu \le [/mm] -c)$   (da einzelne Punkte keine Masse haben bei der Normalverteilung)

$=P [mm] \left( \frac{X-\mu}{\sigma} \le \frac{c}{\sigma} \right) [/mm] - P [mm] \left( \frac{X-\mu}{\sigma} \le -\frac{c}{\sigma} \right)$ [/mm]

$= [mm] \Phi\left( \frac{c}{\sigma} \right) [/mm] -  [mm] \Phi\left( -\frac{c}{\sigma} \right)$ [/mm]

$= [mm] \Phi\left( \frac{c}{\sigma} \right) [/mm] -  [mm] \left(1 - \Phi\left(\frac{c}{\sigma} \right) \right)$ [/mm]

$=2 [mm] \Phi\left( \frac{c}{\sigma} \right) [/mm] -1$.

Ist es jetzt klarer? :-)

Wenn nein: Welchen Schritt verstehst du jetzt nihct?

Viele Grüße
Julius

Bezug
                
Bezug
Berechnung v. Wahrscheinlichk.: Frage
Status: (Frage) beantwortet Status 
Datum: 16:24 Fr 27.05.2005
Autor: Back-Up

Es ist verständlicher :-). Mein eigentliches Verständnisproblem bleibt aber. Ich verstehe diesen Schritt nicht:

$=P [mm] \left( \frac{X-\mu}{\sigma} \le \frac{c}{\sigma} \right) [/mm] - P [mm] \left( \frac{X-\mu}{\sigma} \le -\frac{c}{\sigma} \right)$ [/mm]

$= [mm] \Phi\left( \frac{c}{\sigma} \right) [/mm] -  [mm] \Phi\left( -\frac{c}{\sigma} \right)$ [/mm]

Warum steht nur das [mm] \bruch{c}{\sigma} [/mm] in der Klammer?


Gruß

Bezug
                        
Bezug
Berechnung v. Wahrscheinlichk.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:36 Fr 27.05.2005
Autor: Julius

Hallo!

> Es ist verständlicher :-). Mein eigentliches
> Verständnisproblem bleibt aber. Ich verstehe diesen Schritt
> nicht:
>  
> [mm]=P \left( \frac{X-\mu}{\sigma} \le \frac{c}{\sigma} \right) - P \left( \frac{X-\mu}{\sigma} \le -\frac{c}{\sigma} \right)[/mm]
>
> [mm]= \Phi\left( \frac{c}{\sigma} \right) - \Phi\left( -\frac{c}{\sigma} \right)[/mm]
>  
> Warum steht nur das [mm]\bruch{c}{\sigma}[/mm] in der Klammer?

Nun, es ist so: Die Zufallsvariable $X$ ist (eventuell auch nur näherungsweise, das weiß ich nicht, weil du darüber nichts aussagst) normalverteilt mit Erwartungswert [mm] $\mu$ [/mm] und Standardabweichung [mm] $\sigma$. [/mm]

Wenn ich diese Zufallsvariable standardisiere, wenn ich also den Erwartungswert abziehe und dann das Ergebnis durch die Standardabweichung teile, dann ist die Zufallsvarible standardnormalverteilt.

Sprich:

[mm] $\tilde{X}= \frac{X-\mu}{\sigma}$ [/mm]

ist standardnormalverteilt.

Daher gilt:

[mm]=P \left( \frac{X-\mu}{\sigma} \le \frac{c}{\sigma} \right) - P \left( \frac{X-\mu}{\sigma} \le -\frac{c}{\sigma} \right)[/mm]

[mm]= P\left (\tilde{X} \le \frac{c}{\sigma} \right) - P \left( \tilde{X} \le -\frac{c}{\sigma} \right)[/mm]

[mm]= \Phi\left( \frac{c}{\sigma} \right) - \Phi\left( -\frac{c}{\sigma} \right)[/mm]


Beachte bitte: Wenn $Z$ standardnormalverteilt ist, dann gilt:

$P(Z [mm] \le [/mm] z) [mm] =\Phi(z)$. [/mm]

Viele Grüße
Julius


Bezug
                                
Bezug
Berechnung v. Wahrscheinlichk.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:40 Fr 27.05.2005
Autor: Back-Up

Danke! Verstanden :-).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]