www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Berechnung der Dimension
Berechnung der Dimension < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung der Dimension: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:25 Mi 19.12.2012
Autor: amarus

Aufgabe
Es seien U;W Unterräaume eines Vektorraumes V mit dim V = 8; dim U = 6 und
dimW = 7. Welche Dimension kann [mm] U\cap [/mm] W haben?


Ich denke ich habe die Aufgabe gelöst, würde aber gerne nochmal auf Nummer sicher gehen...ist folgender Ansatz so korrekt ?

dim(U [mm] \cap [/mm] W)=dim(U)+dim(W)-dim(U+W)

für dim(U+W) gilt ja folgendes:
dim(U+W) [mm] \ge [/mm] max(dim(U),dim(W) was ja in diesem fall 7 wäre.

Als Lösung würde sich ja dann folgendes ergeben:

dim(U [mm] \cap [/mm] W)= 6 + 7 -7 = 6

Ist das so korrekt ?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechnung der Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:37 Mi 19.12.2012
Autor: wieschoo

Da hast du irgendwie Unsinn geschrieben. In der Aufgabenstellung sind doch schon alle Dimensionen gegeben.

Bezug
        
Bezug
Berechnung der Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Mi 19.12.2012
Autor: amarus

wo steht denn in der aufgabenstellung dim(U [mm] \cap [/mm] W) ?

Bezug
                
Bezug
Berechnung der Dimension: Frechheit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Do 20.12.2012
Autor: wieschoo


> wo steht denn in der aufgabenstellung dim(U [mm]\cap[/mm] W) ?

Wie man sieht hast du nun die Aufgabenstellung abgeändert.
Jetzt stimmt diese.

Bezug
                        
Bezug
Berechnung der Dimension: keinerlei Frechheit
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:54 Do 20.12.2012
Autor: angela.h.b.

wieschoo,

es ist mir wichtig, daraufhinzuweisen, daß hier seitens amarus keinerlei Frechheit im Spiel ist:

der einzige Fehler, den amarus gemacht hatte, war, daß er zwischen dem backslash und dem nächsten Buchstaben keine Leerzeichen hatte, so daß das [mm] "\cap [/mm] W" nicht erschienen ist.

Ich habe mir erlaubt, dies zu korrigieren.

LG Angela





Bezug
        
Bezug
Berechnung der Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 04:58 Do 20.12.2012
Autor: angela.h.b.


> Es seien U;W Unterräaume eines Vektorraumes V mit dim V =
> 8; dim U = 6 und
>  dimW = 7. Welche Dimension kann [mm]U\cap W[/mm] haben?
>  Ich denke ich habe die Aufgabe gelöst, würde aber gerne
> nochmal auf Nummer sicher gehen...ist folgender Ansatz so
> korrekt ?
>  
> dim(U [mm]\cap[/mm] W)=dim(U)+dim(W)-dim(U+W)
>  
> für dim(U+W) gilt ja folgendes:
>  dim(U+W) [mm]\ge[/mm] max(dim(U),dim(W) was ja in diesem fall 7
> wäre.

Hallo,

dim(U+W) ist nach unten durch 7 beschränkt, das stimmt.
Und nach oben?
Es kommt für dim(U+W) hier nicht nur die Dimension 7 infrage.

>  
> Als Lösung würde sich ja dann folgendes ergeben:
>  
> dim(U [mm]\cap[/mm] W)= 6 + 7 -7 = 6
>  
> Ist das so korrekt ?

Ja,
bloß nicht vollständig, s.o.

LG Angela

>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]