www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Berechnung Orthonormalbasis
Berechnung Orthonormalbasis < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Orthonormalbasis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mo 07.05.2012
Autor: yangwar1

Aufgabe
Es sei V:={f(X) [mm] \in \IR[x] [/mm] | deg(f(X)) [mm] \le [/mm] 2} der [mm] \IR- [/mm] Vektorraum aller Polynome vom Grad kleiner gleich 2 mit Koeffizienten aus [mm] \IR. [/mm] Weiter Sei durch [mm] \Phi(f(X),g(X)):=\integral_{0}^{1}{f(x)g(x) dx} [/mm] eine Bilinearform gegeben. Berechnen Sie eine Orthonormalbasis von V bezüglich [mm] \Phi [/mm]







Zunächst habe ich mir die Basis [mm] (v_1,v_2,v_3)=1,x,x^2 [/mm] gewählt. Mit dieser starte ich.
Ich habe nach dem Schmidt-Verfahren bereits zwei Basisvektoren berechnet, und zwar wie folgt:

[mm] v_1'=v_1 [/mm]
[mm] w_1=1/\wurzel{\Phi(1,1)}*v_1'=1/1*1=1. [/mm]

Überprüfen: [mm] \Phi(w_1,_1)=\Phi(1,1)=1. [/mm] Also stimmt.

[mm] v_2'=-\Phi(v_2,w_1)w_1+v_2 [/mm]
=-1/2+x

[mm] w_2=\bruch{1}{\wurzel{\Phi(-1/2+x,-1/2+x)}}*(-1/2+x)=-(\bruch{1}{4* \wurzel{3}} [/mm] + [mm] \bruch{1}{2* \Wurzel{3}}*x [/mm]

Überprüfe ich das, kommt aber für
[mm] \integral_{0}^{1}{(-(\bruch{1}{4* \wurzel{3}} + \bruch{1}{(2* \Wurzel{3}}*x)^2 dx}=1/144 [/mm] heraus. Was ja nicht 1 ist, wie gewünscht. Wo liegt denn der fehler?

        
Bezug
Berechnung Orthonormalbasis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Di 08.05.2012
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> Es sei V:={f(X) [mm]\in \IR[x][/mm] | deg(f(X)) [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

2} der [mm]\IR-[/mm]

> Vektorraum aller Polynome vom Grad kleiner gleich 2 mit
> Koeffizienten aus [mm]\IR.[/mm] Weiter Sei durch
> [mm]\Phi(f(X),g(X)):=\integral_{0}^{1}{f(x)g(x) dx}[/mm] eine
> Bilinearform gegeben. Berechnen Sie eine Orthonormalbasis
> von V bezüglich [mm]\Phi[/mm]
>  
>
>
>
>
>
> Zunächst habe ich mir die Basis [mm](v_1,v_2,v_3)=1,x,x^2[/mm]
> gewählt. Mit dieser starte ich.
> Ich habe nach dem Schmidt-Verfahren bereits zwei
> Basisvektoren berechnet, und zwar wie folgt:

Hallo,

Du startest also mit [mm] v_1:=1, v_2:=x, v_3:=x^2. [/mm]

>  
> [mm]v_1'=v_1[/mm]
>  [mm]w_1=1/\wurzel{\Phi(1,1)}*v_1'=1/1*1=1.[/mm]
>  
> Überprüfen: [mm]\Phi(w_1,_1)=\Phi(1,1)=1.[/mm] Also stimmt.
>  
> [mm]v_2'=-\Phi(v_2,w_1)w_1+v_2[/mm]
>  =-1/2+x

Ja.


>  
> [mm]w_2=\bruch{1}{\wurzel{\Phi(-1/2+x,-1/2+x)}}*(-1/2+x)=-(\bruch{1}{4* \wurzel{3}}[/mm]  + [mm]\bruch{1}{2* \Wurzel{3}}*x[/mm]

Ich glaube, Du hast [mm] \wurzel{\Phi(-1/2+x,-1/2+x)} [/mm] falsch berechnet.
Es ist meiner Rechnung nach [mm] \wurzel{\Phi(-1/2+x,-1/2+x)}=\bruch{1}{2\wurzel{3}}, [/mm] und folglich ist
[mm] \bruch{1}{\wurzel{\Phi(-1/2+x,-1/2+x)}}=2\wurzel{3}. [/mm]

Überprüfe das mal!

LG Angela


>  
> Überprüfe ich das, kommt aber für
> [mm]\integral_{0}^{1}{(-(\bruch{1}{4* \wurzel{3}} + \bruch{1}{(2* \Wurzel{3}}*x)^2 dx}=1/144[/mm]
> heraus. Was ja nicht 1 ist, wie gewünscht. Wo liegt denn
> der fehler?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]