www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Berechnung Grenzwerte
Berechnung Grenzwerte < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Grenzwerte: Frage
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:57 Mi 22.12.2004
Autor: Maiko

Ich habe Probleme bei der Berechnung folgender Grenzwerte. Dabei soll nicht die Regel de l'Hopital verwendet werden.
Könnte mir bitte jmd. helfen?

lim       [ a * sin (b x ) ] / [ c*x ]
x->0    

Hier ist die Lösung. Für mich ist das aber nicht ausführlich genug. Ich versteh es nicht richtig.
[Externes Bild http://et.netaction.de/et/bilder/org/939.gif]

-------------------------------------------------------------
Warum ist der Grenzwert folgenden Ausdrucks = 3/2 ?

[Externes Bild http://et.netaction.de/et/bilder/org/938.gif]

--------------------------------------------------------------
Und die letzte Frage:

lim  x * sin (1/x)
x->0
Hier soll 0 rauskommen. Könnte das jmd. kurz erläutern?

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt http://www.uni-protokolle.de/foren/viewt/12257,0.html


Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Anhang Nr. 2 (Typ: gif) [nicht öffentlich]
        
Bezug
Berechnung Grenzwerte: Ansätze
Status: (Antwort) fertig Status 
Datum: 00:47 Do 23.12.2004
Autor: e.kandrai

Zu 1) Hast du schon mal von den Regeln von l'Hôpital gehört?
Ist so: wenn gilt, dass beim "Einsetzen" des Grenzwertes sich ein Ausdruck wie [mm]\bruch{0}{0}[/mm] oder [mm]\bruch{\infty}{\infty}[/mm] ergibt, dann kann man Zähler und Nenner getrennt voneinander ableiten (nicht Quotientenregel verwenden), und diesen neuen Ausdruck untersuchen, der Grenzwert ändert sich dadurch nicht.
Beispiel: [mm]\limes_{x\rightarrow0}{\bruch{sin(x)}{x}} = \bruch{0}{0} = \limes_{x\rightarrow0}{\bruch{cos(x)}{1}}=1[/mm],
da [mm]cos(0)=1[/mm] gilt.
Wobei Ausdrücke wie [mm]\bruch{0}{0}[/mm] natürlich in " " zu lesen / schreiben sind, da sie ja nicht definiert sind.
Das lässt sich auch auf deine Aufgabe anwenden:
[mm]\limes_{x\rightarrow0}{\bruch{a \cdot sin(bx)}{cx}}=\bruch{0}{0}=\limes_{x\rightarrow0}{\bruch{a \cdot b \cdot cos(bx)}{c}}=\bruch{a \cdot b}{c}[/mm]

Zu 2) Klammer mal im Zähler ein [mm]sin(x)[/mm] aus, und kürze es mit dem [mm]sin(x)[/mm] aus der zweiten Klammer des Nenners raus (hier brauchst du nichts ausklammern, da es sowieso schon als Faktor dasteht).
Dann hast du: [mm]\limes_{x\rightarrow0}\bruch{3-4sin^2(x)}{(4cos^3(x)-3cos(x)) \cdot 2cos(x)}}[/mm]
Und hier geht der Zähler für [mm]x \to 0[/mm] gegen 0, und alle cos-Terme des Nenners gegen 1.

Zu 3) Hier ist es so, dass [mm]x \to 0[/mm] geht, und der Term [mm]sin(x)[/mm] zwischen -1 und +1 wandert. Das erklärt den Grenzwert 0 eigentlich schon, da diese beiden "Teil-Grenzwerte" miteinander multipliziert werden.

Bezug
                
Bezug
Berechnung Grenzwerte: (Mini-)Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:57 Do 23.12.2004
Autor: Loddar


>  Dann hast du:
> [mm]\limes_{x\rightarrow0}\bruch{3-4sin^2(x)}{(4cos^3(x)-3cos(x)) \cdot 2cos(x)}}[/mm]
>  
> Und hier geht der Zähler für [mm]x \to 0[/mm] gegen 0, und alle
> cos-Terme des Nenners gegen 1.

*hüstel* Der Gesamtzähler geht für [mm]x \to 0[/mm] natürlich gegen 3, damit Du auch Dein gewünschtes Ergebnis erhältst...


Bezug
                        
Bezug
Berechnung Grenzwerte: ähh... ja
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Do 23.12.2004
Autor: e.kandrai

Zum Glück gibt's noch Leute, die mitdenken ;-)

Bezug
        
Bezug
Berechnung Grenzwerte: Aufgabe 1 ohne de l'Hospital
Status: (Antwort) fertig Status 
Datum: 18:19 Di 28.12.2004
Autor: Loddar


> lim       [ a * sin (b x ) ] / [ c*x ]
>  x->0    

e.kandrai hat wohl den Hinweis "ohne de l'Hospital" überlesen ;-) .

Ein Alternativweg (allerdings auch grundsätzlich anders als Dein Lösungsvorschlag) sieht folgendermaßen aus:

[mm] $\limes_{x\rightarrow0} \bruch{a*sin(bx)}{c*x}$ [/mm]
$= [mm] \limes_{x\rightarrow0} (\bruch{a}{c}*\bruch{sin(bx)}{x})$ [/mm]
$= [mm] \bruch{a}{c} [/mm] * [mm] \limes_{x\rightarrow0} \bruch{sin(bx)}{x}$ [/mm]

Substitution: z:= bx [mm] $\Rightarrow$ [/mm] $x = [mm] \bruch{z}{b}$ [/mm]

[mm] $\Rightarrow$ [/mm]
[mm] $\bruch{a}{c} [/mm] * [mm] \limes_{x\rightarrow0} \bruch{sin(bx)}{x}$ [/mm]
$= [mm] \bruch{a}{c} [/mm] * [mm] \limes_{z\rightarrow0} \bruch{sin(z)}{\bruch{z}{b}}$ [/mm]
$= [mm] \bruch{a}{c} [/mm] * [mm] \limes_{z\rightarrow0} \bruch{b*sin(z)}{z}$ [/mm]
$= [mm] \bruch{a*b}{c} [/mm] * [mm] \limes_{z\rightarrow0} [\bruch{1}{z} [/mm] * sin(z)]$

Die Sinusfunktion kann man auch als folgende Reihe darstellen:
$sin(z) = [mm] \summe_{n=0}^{\infty} \bruch{(-1)*(-z)^{2n+1}}{(2n+1)!} [/mm] = [mm] \bruch{z^1}{1!} [/mm] - [mm] \bruch{z^3}{3!} [/mm] + [mm] \bruch{z^5}{5!} [/mm] - [mm] \bruch{z^7}{7!} \pm [/mm] ...$

Eingesetzt in unseren Grenzwertausdruck ergibt sich:
[mm] $\bruch{a*b}{c} [/mm] * [mm] \limes_{z\rightarrow0} [\bruch{1}{z} [/mm] * sin(z)]$
$= [mm] \bruch{a*b}{c} [/mm] * [mm] \limes_{z\rightarrow0} [\bruch{1}{z} [/mm] * [mm] (\bruch{z^1}{1!} [/mm] - [mm] \bruch{z^3}{3!} [/mm] + [mm] \bruch{z^5}{5!} [/mm] - [mm] \bruch{z^7}{7!} \pm [/mm] ...)]$

Ausmultiplizieren mit [mm] $\bruch{1}{z}$: [/mm]
[mm] $\bruch{a*b}{c} [/mm] * [mm] \limes_{z\rightarrow0} (\bruch{1}{1!} [/mm] - [mm] \bruch{z^2}{3!} [/mm] + [mm] \bruch{z^4}{5!} [/mm] - [mm] \bruch{z^6}{7!} \pm [/mm] ...)$
$= [mm] \bruch{a*b}{c} [/mm] * [mm] \limes_{z\rightarrow0} [/mm] (1 - [mm] \bruch{z^2}{3!} [/mm] + [mm] \bruch{z^4}{5!} [/mm] - [mm] \bruch{z^6}{7!} \pm [/mm] ...)$
$= [mm] \bruch{a*b}{c} [/mm] * (1 - [mm] \bruch{0}{3!} [/mm] + [mm] \bruch{0}{5!} [/mm] - [mm] \bruch{0}{7!} \pm [/mm] ...)$
$= [mm] \bruch{a*b}{c} [/mm] * 1$
$= [mm] \bruch{a*b}{c}$ [/mm]  Voilà!

Mal ein etwas anderer Weg, aber so kann es auch gehen ...

Ehrlich gesagt, hat dieser Weg auch einen logischen "Hinkefuß":
Der Hinweis "ohne de l'Hospital" weist ja darauf hin, daß man eine Lösung ohne Differentialrechnung finden soll.
In der Reihenentwicklung steckt nun aber doch wieder Differentialrechnung (hier im Endergebnis für die Sinus-Funktion nicht sichtbar) ...


Loddar


Bezug
                
Bezug
Berechnung Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 03.01.2005
Autor: Maiko

Erstmal danke für eure Hilfe.
Hätte nur nochmal eine kurze Frage zu dem letzten Lösungsweg von Loddar:
Nachdem du  x=z/b  substituiert hast, steht ja da

a/c * b * ( [ sin z ] / z )
Kann man nicht einfach hier ansetzen und sagen ( [ sin z ] / z ) =1
1 * a/c * b = a/c *b

Das ist doch auch richtig oder?
Natürlich müsste man den Beweis für diese Aussage antreten, dass [ (sin z ) / z ] = 1 ist.

Bezug
                        
Bezug
Berechnung Grenzwerte: Stimmt !!
Status: (Antwort) fertig Status 
Datum: 19:51 Mo 03.01.2005
Autor: Loddar

Hallo Maiko!

> Nachdem du  x=z/b  substituiert hast, steht ja da
> a/c * b * ( [ sin z ] / z )
> Kann man nicht einfach hier ansetzen und sagen
> ( [ sin z ] / z ) =1
> 1 * a/c * b = a/c *b
> Das ist doch auch richtig oder?

[daumenhoch]


> Natürlich müsste man den Beweis für diese Aussage
> antreten, dass [ (sin z ) / z ] = 1 ist.

[daumenhoch]. Einen Beweis hierfür findest Du hier .


Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]