www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Berechnung Flächeninhalt
Berechnung Flächeninhalt < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:58 So 10.12.2006
Autor: Dr.Sway

Aufgabe
Berechnen Sie unter Beachtung von Aufgabe 1.1.2 den Inhalt jenes Flächenstücks, das von der Kurve Ck und der Parabel P umschlossen wird.

Hallo
erst mal genauere Angaben:

Ck: fk(x)=kxe^(-x/k)
P: y=x²/e

Fk: -k² e^(-x/k) (x+k) ist als Stammfunktion zuvor angegeben.

so Untergrenze ist die 0 und Obergrenze der Hochpunkt (aus 1.1.2) HP (k/k²* e^(-1)*(k²/e))

So nun weiß ich aber nicht genau wie ich das anstellen soll.
Aus der Zeichnung ist ersichtlich das die Ck und p oberhalb der x-Achse verlaufen und dass die Ck oberhalb der Parabel P verläuft.
d.h Man müsste die ck - p rechnen/integrieren
Aber was ist die Stammfunktion der p ?

Schon mal danke im Vorraus

Sabrina

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Berechnung Flächeninhalt: Formeleditor!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:56 So 10.12.2006
Autor: Bastiane

Hallo Dr.Sway!

Ich würde mir deine Aufgabe evtl. angucken, wenn sie vernünftig lesbar wäre. Probier's doch mal mit unserem Formeleditor!

Viele Grüße
Bastiane
[cap]

Bezug
        
Bezug
Berechnung Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 So 10.12.2006
Autor: Zwerglein

Hi, Sabrina,

geht's Dir wirklich nur um die Stammfunktion von p?
Nichts leichter als das:

[mm] \integral {\bruch{1}{e}*x^{2} dx} [/mm] = [mm] \bruch{1}{3e}*x^{3} [/mm] + c.

mfG!
Zwerglein

Bezug
                
Bezug
Berechnung Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:26 So 10.12.2006
Autor: Dr.Sway

Aufgabe
Flächenberechnung

Ja danke
ich habe es jetzt mit dem Wert versucht, jedoch krieg ich da kein richtiges Ergebnis raus?!?
zuvor musste bewiesen werden dass die Fk(x) eine Stammfunktion ist darf man diese jetzt hernehmen oder muss ich jetzt eine bilden ?!?

So wäre jetzt mein ansatz aber bring kein ergebnis raus.

ck: Fk(X)= [mm] -k²*e^\bruch{-x}{k} [/mm] * (x+k)
P= [mm] \integral_{f(x) dx} \bruch{1}{3e} [/mm] *x³
[mm] \integral_{0}^{k}{f(x) dx}-k²*e^\bruch{-x}{k} [/mm] * [mm] (x+k)-\bruch{1}{3e} [/mm] *x³

[mm] \integral_{0}^{k}{f(x) dx}-k²*e^\bruch{-k}{k} [/mm] * [mm] (k+k)-\bruch{1}{3e} *k³-(-k²*e^\bruch{-0}{k} [/mm] * [mm] (0+k)-\bruch{1}{3e} [/mm] *0³)

[mm] \integral_{0}^{k}-k^2*e^-1*2k-\bruch{1}{3}k^3*e^-1+k^3 [/mm]

eingentlich sollte laut meinem Lehrer [mm] \bruch{-7k³}{3e+k³} [/mm] rauskommen

Danke für deine Hilfe

Sabrina


Bezug
                        
Bezug
Berechnung Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 So 10.12.2006
Autor: Zwerglein

Hi, Sabrina,

Du musst halt [mm] \integral_{0}^{k}{(f(x)-p(x)) dx} [/mm] "ausrechnen",
wobei Du die Stammfunktion von f  schon kennst (und kein Mensch berechnet etwas, das er schon kennt, nochmals!) und die von p ja nun auch klar ist.

Daher:
... = [mm] [-k^{2}*e^{-\bruch{x}{k}}*(x+k) [/mm] - [mm] \bruch{1}{3e}*x^{3}]_{0}^{k} [/mm] = ...

Bei Deinem Ergebnis musst Du falsch abgeschrieben haben.
Ich krieg' jedenfalls (ohne Gewähr!) am Ende
[mm] k^{3}*\bruch{3e-7}{3e} [/mm] raus!
(Wüsste auch gar nicht, wie das [mm] k^{3} [/mm] in den Nenner des Ergebnisses kommen sollte!)


mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]