www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Berechnung Bedingte Erwart.
Berechnung Bedingte Erwart. < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnung Bedingte Erwart.: Hinweis
Status: (Frage) überfällig Status 
Datum: 18:15 Do 29.06.2017
Autor: Trajan

Aufgabe
Sei X~N(0,1), W~(0,[mm]\sigma^2[/mm]) unabhängig von X, Y=X+W.
a) Bestimmen Sie die Verteilung von Y und von (X,Y).
b) Berechnen Sie E[X| [mm]\sigma (Y)[/mm]]

Ich habe bei a) bereits nachgewiesen, dass Y~N(0,1+[mm]\sigma^2[/mm]) und dass (X,Y) mehrdimensional normalverteilt ist.

Bei b) habe ich leider Probleme den Ansatz zu finden. Ich vermute, dass ich es schaffen muss die Zufallsvariable X so zu zerlegen, dass ein Teil  [mm]\sigma (Y)[/mm]-messbar ist und der andere unabhängig zum ersten Teil ist. Dann könnte ich mit den Eigenschaften der bedingten Erwartung rechnen. Die einzige Zerlegung, die mir einfällt ist:

[mm]X=\frac{1}{2}(X-W+X+W) [/mm]
.
Das Dumme ist nur, dass X-W und X+W in diesem Fall nicht unabhängig sind.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Berechnung Bedingte Erwart.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 So 02.07.2017
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]