www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Berechnen von Folgengliedern
Berechnen von Folgengliedern < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berechnen von Folgengliedern: Rechenweg
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:09 Mi 20.08.2014
Autor: elke69

Aufgabe 1
Berechnen Sie, welches Glied der Folge (a[mm]_{n}[/mm]) den Wert x hat
a[mm]_{n}[/mm]=1+[mm]\bruch{1}{n}[/mm], x=1,0001

Aufgabe 2
Berechnen Sie, welches Glied der Folge (a[mm]_{n}[/mm]) den Wert x hat
a[mm]_{n}[/mm]=1+[mm]\bruch{1}{2^n}[/mm], x=[mm]\bruch{5125}{5120}[/mm]

Ich weiß die Lösung, ich bekomme es aber leider nicht ausgerechnet, so weit bin ich bisher:

Aufgabe 1: 1,0001=1+[mm]\bruch{1}{n}[/mm]
Aufgabe 2: 1+[mm]\bruch{1}{2^n}[/mm]=[mm]\bruch{5125}{5120}[/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Berechnen von Folgengliedern: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Mi 20.08.2014
Autor: reverend

Hallo elke69,

Deine Ansätze sind jedenfalls richtig.

> Berechnen Sie, welches Glied der Folge (a[mm]_{n}[/mm]) den Wert x
> hat
>  a[mm]_{n}[/mm]=1+[mm]\bruch{1}{n}[/mm], x=1,0001
>  Berechnen Sie, welches Glied der Folge (a[mm]_{n}[/mm]) den Wert x
> hat
>  a[mm]_{n}[/mm]=1+[mm]\bruch{1}{2^n}[/mm], x=[mm]\bruch{5125}{5120}[/mm]
>  Ich weiß die Lösung, ich bekomme es aber leider nicht
> ausgerechnet, so weit bin ich bisher:
>  
> Aufgabe 1: 1,0001=1+[mm]\bruch{1}{n}[/mm]
>  Aufgabe 2: 1+[mm]\bruch{1}{2^n}[/mm]=[mm]\bruch{5125}{5120}[/mm]

Ab hier geht es mit Äquivalenzumformungen, mal am Beispiel von Aufgabe 1:

[mm] 1,0001=1+\br{1}{n}\quad\gdw\quad 0,0001=\br{1}{n} [/mm]
(auf beiden Seiten 1 abgezogen)

Jetzt auf beiden Seiten den Kehrwert bilden.
[mm] \gdw\quad \br{1}{0,0001}=n=10000 [/mm]

Bei Aufgabe 2 ist die Umformung uwesentlich schwieriger, da man auch noch logarithmieren muss.

Grüße
reverend
        
Berechnen von Folgengliedern: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 20.08.2014
Autor: elke69

Aufgabe
Berechnen Sie, welches Glied der Folge (a$ _{n} $) den Wert x hat
a$ _{n} $=1+$ [mm] \bruch{1}{2^n} [/mm] $, x=$ [mm] \bruch{5125}{5120} [/mm] $

Danke, für den Rechenweg von Aufgabe 1, mir ist jetzt klar, wo ich was falsch gemacht habe.
Für Aufgabe 2 wäre der Rechenweg noch toll, weil ich eben spätestens beim logarhytmieren hängen bleibe.
                
Berechnen von Folgengliedern: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mi 20.08.2014
Autor: schachuzipus

Hallo,

> Berechnen Sie, welches Glied der Folge (a[mm] _{n} [/mm]) den Wert x
> hat
> a[mm] _{n} [/mm]=1+[mm] \bruch{1}{2^n} [/mm], x=[mm] \bruch{5125}{5120}[/mm]
> Danke,
> für den Rechenweg von Aufgabe 1, mir ist jetzt klar, wo
> ich was falsch gemacht habe.
> Für Aufgabe 2 wäre der Rechenweg noch toll, weil ich
> eben spätestens beim logarhytmieren hängen bleibe.

Wobei?

Zeige deine Rechnung bis zu dem Punkt, an dem du hängst.

Nur mit Worten wird das nix ...

Gruß

schachuzipus
                
Berechnen von Folgengliedern: Antwort
Status: (Antwort) fertig Status 
Datum: 16:39 Mi 20.08.2014
Autor: M.Rex

Hallo

Nachdem du in Aufgabe 2 dieselben Rechenschritte wie in Aufgabe 1 gemacht hast (das hast du ja hoffentlich), solltest du eine Gleichung der Form [mm] 2^{n}=\Box [/mm] haben.

Wie du nun mit dem Logarithmus weiterarbeitest, sollte in der 11 Klasse bekannt sein.

Marius
                
Berechnen von Folgengliedern: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Mi 20.08.2014
Autor: reverend

Hallo nochmal,

bring doch erstmal [mm] \br{5125}{5120} [/mm] in eine vernünftige Form. Der Bruch ist >1, so dass man ihn also auch

[mm] \br{5125}{5120}=1+\br{a}{b} [/mm]

schreiben kann, wobei 0<a<b ist und a und b keinen gemeinsamen Teiler mehr haben - der Bruch also gekürzt ist.

Grüße
reverend


                
Berechnen von Folgengliedern: korrekte Schreibweise
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Mi 20.08.2014
Autor: Al-Chwarizmi

(sorry, dies hätte nicht eine Frage, sondern eine bloße
Mitteilung werden sollen !)


> ..... toll, weil ich spätestens beim

>          logarhytmieren

>  hängen bleibe.


Hallo Elke,

du scheinst eine sprachbewusste Person zu sein. Trotzdem liegst
du im vorliegenden Fall etwas daneben. Die Ausdrücke
"Logarithmus" und "logarithmieren" haben etymologisch
nichts zu tun mit "Rhythmus" (und auch nicht mit den nicht
korrekt geschriebenen "Rhytmus" und "Rythmus"), sondern
mit "Logos" und "Arithmos"(Zahl) und also auch mit
"Arithmetik" ...

LG ,   Al-Chwarizmi
                
Berechnen von Folgengliedern: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Mi 20.08.2014
Autor: Marcel

Hallo,

> Berechnen Sie, welches Glied der Folge (a[mm] _{n} [/mm]) den Wert x
> hat
> a[mm] _{n} [/mm]=1+[mm] \bruch{1}{2^n} [/mm], x=[mm] \bruch{5125}{5120}[/mm]
>  Danke,
> für den Rechenweg von Aufgabe 1, mir ist jetzt klar, wo
> ich was falsch gemacht habe.
>  Für Aufgabe 2 wäre der Rechenweg noch toll, weil ich
> eben spätestens beim logarhytmieren hängen bleibe.

dann müßtest Du

    [mm] $a_n=1+\frac{1}{2^n}=\frac{5125}{5120}$ [/mm]

    [mm] $\iff$ $2^n=\frac{5120}{5125-5120}=...$ [/mm]

nachvollziehen (und ergänzen) können.

Diese letztstehende Gleichung kann man übrigens durch ausprobieren
(wobei man manche einfachen Potenzen eh auch auswendig kennen sollte;
jede[r] Informatiker[in] würde hier nichts rechnen...) lösen (wäre auch
schlecht, wenn nicht, denn es soll doch $n [mm] \in \IN$ [/mm] sein), aber mal zur
Erinnerung (für $y > [mm] 0\,$): [/mm]

    [mm] $2^n=y$ [/mm]

    [mm] $\iff$ $n=\log_2(y)\,.$ [/mm]

Wenn Du nun sagst "Aber mein Taschenrechner hat doch keine [mm] $\log_2$-Taste": [/mm]
Das stimmt. Aber er hat sicher eine [mm] $\log$-Taste [/mm] (das ist meistens [mm] $\log_{10}$) [/mm] und
er hat eine [mm] $\ln$-Taste [/mm] (das ist [mm] $\log_e$). [/mm]

Benutze also bei der Taschenrechnereingabe die Gleichung

    [mm] $\log_2(y)=\log_r(y)/\log_r(2)$ [/mm] für positives $r [mm] \not=1\,,$ [/mm]

bspw.

    [mm] $\log_2(y)=\frac{\ln(y)}{\ln(2)}\,.$ [/mm]

P.S. Nebenbei: [mm] $\frac{5125}{5120}=\frac{1025}{1024}\,,$ [/mm] auch solche einfachen Vereinfachungen
sollte man nicht vergessen.

Gruß,
  Marcel
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]