www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Beliebig große Primzahllücken
Beliebig große Primzahllücken < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beliebig große Primzahllücken: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 11:31 Sa 16.10.2010
Autor: StephanieBuehler

Aufgabe
Zwischen 2 aufeinanderfolgenden Primzahlen gibt es beliebig große Lücken.
direkter Beweis:Betrachte n aufeinanderfolgende natürliche Zahlen

(n+1)! +2       ist durch 2 teilbar
(n+1)! +3       ist durch 3 teilbar
..
..
(n+1)! +(n+1)   ist durch (n+1) teilbar

mit n → ∞ wächst auch die Zahl der n aufeinanderfolgenden Primzahllücke → ∞.
qed

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen!

Den obigen Beweis habe ich soweit verstanden, allerdings habe ich für n einfach mal ein paar Zahlen angeschaut und folgendes festgestellt:
Sei n=2, so gilt
1. (2+1)! +2=8       ist durch 2 teilbar
2. (2+1)! +3=9       ist durch 3 teilbar
3. (2+1)! +4=10     ist NICHT durch 4 teilbar, aber durch 2
4. (2+1)! +5=11     ist eine Primzahl

Sei n=3, so gilt
1. (3+1)! +2=26      ist durch 2 teilbar
2. (3+1)! +3=27      ist durch 3 teilbar
3. (3+1)! +4=28      ist durch 4 teilbar
4. (3+1)! +5=29      ist eine Primzahl

Meine Frage: laut dem obigen Beweis sollten doch fur n=2 Nr.3 und Nr. 4 jeweils durch 4 bzw. 5 teilbar sein. Genauso bei n=3 Nr.5.  Wo ist hier mein Denkfehler?
Vielen Dank

        
Bezug
Beliebig große Primzahllücken: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Sa 16.10.2010
Autor: abakus


> Zwischen 2 aufeinanderfolgenden Primzahlen gibt es beliebig
> große Lücken.
>  direkter Beweis:Betrachte n aufeinanderfolgende
> natürliche Zahlen
>  
> (n+1)! +2       ist durch 2 teilbar
>  (n+1)! +3       ist durch 3 teilbar
>  ..
>  ..
>  (n+1)! +(n+1)   ist durch (n+1) teilbar
>  
> mit n → ∞ wächst auch die Zahl der n
> aufeinanderfolgenden Primzahllücke → ∞.
>  qed
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo zusammen!
>  
> Den obigen Beweis habe ich soweit verstanden, allerdings
> habe ich für n einfach mal ein paar Zahlen angeschaut und
> folgendes festgestellt:
>  Sei n=2, so gilt
>  1. (2+1)! +2=8       ist durch 2 teilbar
>  2. (2+1)! +3=9       ist durch 3 teilbar

Da hast du die Beweisidee nur begrenzt verstanden.
Im Beispiel wurden nur die Zahlen 2 bis (n+1) addiert.
Wenn du als Beispiel n=2 verwendest, darfst du nur bis (2+1), also bis 3 addieren.

>  3. (2+1)! +4=10     ist NICHT durch 4 teilbar, aber durch
> 2
> 4. (2+1)! +5=11     ist eine Primzahl
>  
> Sei n=3, so gilt
>  1. (3+1)! +2=26      ist durch 2 teilbar
>  2. (3+1)! +3=27      ist durch 3 teilbar
>  3. (3+1)! +4=28      ist durch 4 teilbar

Ebenso endet hier die Gültigkeit deines Beispiels; es funktioniert nur bis 3+1=4.
Gruß Abakus

>  4. (3+1)! +5=29      ist eine Primzahl
>  
> Meine Frage: laut dem obigen Beweis sollten doch fur n=2
> Nr.3 und Nr. 4 jeweils durch 4 bzw. 5 teilbar sein. Genauso
> bei n=3 Nr.5.  Wo ist hier mein Denkfehler?
>  Vielen Dank


Bezug
                
Bezug
Beliebig große Primzahllücken: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:14 Sa 16.10.2010
Autor: StephanieBuehler

Super vielen Dank - jetzt hab ich es verstanden!!!!
DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]