www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Beispiele Binomialverteilung
Beispiele Binomialverteilung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beispiele Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Sa 01.03.2008
Autor: Kallo

Aufgabe
2 Frauen laufen gerne gegeneinander. Läuferin A gewinnt im 7 von 10 Rennen, Läuferin B 3 von 10 Rennen.

Wie groß ist die Wahrscheinlichkeit das B in den nächsten 5 Läufen

a) genau 4 Läufe gewinnt
b) 4 Läufe nacheinander gewinnt
c) keinen der Läufe gewinnt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo!

Diese Aufgabe wurde mir als Beispielaufgabe für das mündliche Abitur gegeben. Ich habe mir daraufhin bei amazon das Buch "Vorbereitung Abitur Stochastik Grundkurs" bestellt, muss aber leider feststellen das das dortige Niveau sehr weit über dem liegt was ich, bei momentanem Kenntnisstand, in der Lage bin zu rechnen.

Daher meine Frage: Kennt jemand Beispielaufgaben auf ähnlichem Niveau zum nachrechnen mit Lösungen? Wäre Super!!

Noch eine weitere Frage: Worin genau liegt der Unterschied zwischen einem Bernoulli Experiment und einem LaPlace Experiment.

Zudem: Gibt es irgendwo Infos zu folgendem:

"A,B Ereignisse P("beide treten ein, mindestens eins tritt ein, höchtens eins tritt ein, genau eins tritt ein, keins tritt ein") > Über Mengen ausdrücken.

Danke vielmals!

Liebe Grüße

Christopher

        
Bezug
Beispiele Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:45 Sa 01.03.2008
Autor: subclasser

Hallo Christopher!

Eine Teilfrage kann ich zumindest beantworten:
Eine Laplace-Experiment ist ein Experiment mit nur endlich verschiedenen Ausgängen, die alle gleich wahrscheinlich sind. Zum Beispiel ist das Werfen eines Würfels ein Laplace-Experiment mit 6 verschiedenen (elementaren) Ausgängen.
Ein Bernoulli-Experiment ist dagegen ein Experiment, dass nur zwei verschiedene Ausgänge haben kann; dies wird meistens als Erfolg oder Misserfolg interpretiert. Die Erfolgswahrscheinlichkeit muss hierbei aber nicht gleich der Misserfolgswahrscheinlichkeit sein. Ein Beispiel wäre "Eine Sechs würfeln". Hierbei beträgt die Erfolgswahrscheinlichkeit nur 1/6.

Ich hoffe, ich konnte dir ein wenig helfen.

Gruß,

Stephan

PS: Hier im Forum solltest du bei den alten Beiträgen einige passende Aufgaben finden.

Bezug
        
Bezug
Beispiele Binomialverteilung: MatheBank!
Status: (Antwort) fertig Status 
Datum: 21:24 Sa 01.03.2008
Autor: informix

Hallo Kallo und [willkommenmr],

> 2 Frauen laufen gerne gegeneinander. Läuferin A gewinnt im
> 7 von 10 Rennen, Läuferin B 3 von 10 Rennen.
>
> Wie groß ist die Wahrscheinlichkeit das B in den nächsten 5
> Läufen
>  
> a) genau 4 Läufe gewinnt
>  b) 4 Läufe nacheinander gewinnt
>  c) keinen der Läufe gewinnt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo!
>  
> Diese Aufgabe wurde mir als Beispielaufgabe für das
> mündliche Abitur gegeben. Ich habe mir daraufhin bei amazon
> das Buch "Vorbereitung Abitur Stochastik Grundkurs"
> bestellt, muss aber leider feststellen das das dortige
> Niveau sehr weit über dem liegt was ich, bei momentanem
> Kenntnisstand, in der Lage bin zu rechnen.

Warum nutzt du nicht dein Mathebuch, das sollte dir viel vertrauter sein.
Schau mal in unsere MBMatheBank, speziell MBEreignis

>  
> Daher meine Frage: Kennt jemand Beispielaufgaben auf
> ähnlichem Niveau zum nachrechnen mit Lösungen? Wäre
> Super!!
>  
> Noch eine weitere Frage: Worin genau liegt der Unterschied
> zwischen einem Bernoulli Experiment und einem LaPlace
> Experiment.
>
> Zudem: Gibt es irgendwo Infos zu folgendem:
>  
> "A,B Ereignisse P("beide treten ein, mindestens eins tritt
> ein, höchtens eins tritt ein, genau eins tritt ein, keins
> tritt ein") > Über Mengen ausdrücken.
>  
> Danke vielmals!
>  
> Liebe Grüße
>  
> Christopher


Gruß informix

Bezug
        
Bezug
Beispiele Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Sa 01.03.2008
Autor: Kallo

Hallo ihr beiden und Danke für die Beiträge.

Leider hilft mein Mtahebuch garnichts. Haben das Buch nie benutzt...

Bezug
        
Bezug
Beispiele Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:05 So 02.03.2008
Autor: Sabah


> 2 Frauen laufen gerne gegeneinander. Läuferin A gewinnt im
> 7 von 10 Rennen, Läuferin B 3 von 10 Rennen.
>
> Wie groß ist die Wahrscheinlichkeit das B in den nächsten 5
> Läufen
>  
> a) genau 4 Läufe gewinnt
>  b) 4 Läufe nacheinander gewinnt
>  c) keinen der Läufe gewinnt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Hallo Kalko

Ich kann dir sehr schönes Buch empfehlen.
Statistische Methoden der VWL und BWL von Josef Schira. In dem Buch gibt es auch viele Beispiele.
Nun kommen wir zu deinem Aufgabe.

a) Musst du zuert wissen, was gesucht ist. Gesucht ist hier

P(X=4)

Die Verteilung ist ja eine Binomialverteilung.  Dann musst du nur noch den Formel zu kennen. Die Formel ist so

[mm] P(X=x)=\vektor{n \\ x}\*p^{x}\*(1-p)^{n-x} [/mm]

Bei Teilaufgabe a  ist ja P(X=4) gefragt.

B=0.3


[mm] P(X=4)=\vektor{5\\ 4}\*0,3^{4}\*(1-0,3)^{1} [/mm]

=0,02835
Das bedeutet, die WK dass B 4 Spiele gewinnt ist  2.835 %




> Diese Aufgabe wurde mir als Beispielaufgabe für das
> mündliche Abitur gegeben. Ich habe mir daraufhin bei amazon
> das Buch "Vorbereitung Abitur Stochastik Grundkurs"
> bestellt, muss aber leider feststellen das das dortige
> Niveau sehr weit über dem liegt was ich, bei momentanem
> Kenntnisstand, in der Lage bin zu rechnen.
>  
> Daher meine Frage: Kennt jemand Beispielaufgaben auf
> ähnlichem Niveau zum nachrechnen mit Lösungen? Wäre
> Super!!
>  
> Noch eine weitere Frage: Worin genau liegt der Unterschied
> zwischen einem Bernoulli Experiment und einem LaPlace
> Experiment.
>
> Zudem: Gibt es irgendwo Infos zu folgendem:
>  
> "A,B Ereignisse P("beide treten ein, mindestens eins tritt
> ein, höchtens eins tritt ein, genau eins tritt ein, keins
> tritt ein") > Über Mengen ausdrücken.
>  
> Danke vielmals!
>  
> Liebe Grüße
>  
> Christopher


Bezug
        
Bezug
Beispiele Binomialverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 So 02.03.2008
Autor: Kallo

Ich wollte nur darauf hinweisen das es gerne noch weitere Hinweise zu meinen Fragen + Aufgaben geben darf :)

Danke euch!

Bezug
                
Bezug
Beispiele Binomialverteilung: Tipps
Status: (Antwort) fertig Status 
Datum: 16:00 So 02.03.2008
Autor: Infinit

Hallo Kallo,
rechne auch mal ein bisschen selbst mit. Bei der Aufgabe b) gibt es 2 Möglichkeiten 4 aufeinanderfolgende Läufe zu gewinnen, wenn 5 mal gelaufen wird. Die Wahrscheinlichkeit für so einen Lauf ist also [mm] 0,3^4 \cdot 0,7 [/mm] und dann nimmt man das Ganze mal zwei.
In Abwandlung dieses Beispiels ist es nicht schwer, sich zu überlegen, wie groß die Wahrscheinlichkeit ist, fünfmal hintereinander nicht zu gewinnen.
Viel Spaß beim Rechnen,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]