www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Behauptung Matrizen
Behauptung Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Behauptung Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Sa 04.11.2006
Autor: Informacao

Aufgabe
Seien A,B invertierbare Matrizen gleichen Typs. Dann lässt sich A durch endlich viele elementare Zeilentransformationen in B überführen.

Hallo!

Stimmt diese Behauptung oder stimmt sie nicht?

Ich bin mir nicht sicher..ich weiß, dass wenn man eine Matrix A in Zeilenstufenform bringen will, dass man dann geeignete Vielfache sucht um die Diagonale auf 1 zu bringen (der Rest muss ja =0 sein, wie beim Gauß-verfahren eben).
Wenn man jetzt diese Vielfache die man verwendet hat alle miteinander multipliziert kommt genau das Inverse der Matrix A raus..!

Aber wie kann ich das jetzt auf die Behauptung übertragen?

VIele Grüße
Informacao

        
Bezug
Behauptung Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:57 Mo 06.11.2006
Autor: zahlenspieler

Hallo informacao,
>  Hallo!
> Seien A,B invertierbare Matrizen gleichen Typs. Dann lässt
> sich A durch endlich viele elementare
> Zeilentransformationen in B überführen.
>  
> Stimmt diese Behauptung oder stimmt sie nicht?
>

Stimmt!

> Ich bin mir nicht sicher..ich weiß, dass wenn man eine
> Matrix A in Zeilenstufenform bringen will, dass man dann
> geeignete Vielfache sucht um die Diagonale auf 1 zu bringen

Ähm, das geht aber nicht immer - u.z. dann, wenn es linear abhängige Zeilen in der Matrix gibt.

> (der Rest muss ja =0 sein, wie beim Gauß-verfahren eben).
> Wenn man jetzt diese Vielfache die man verwendet hat alle
> miteinander multipliziert kommt genau das Inverse der
> Matrix A raus..!
>
> Aber wie kann ich das jetzt auf die Behauptung übertragen?

Seien $A,B$ invertierbare [mm] $n\times [/mm] n$-Matrizen. Dann existiert ja auch die Inverse zu [mm] $C=AB^{-1}$. [/mm]
Und es ist [mm] $C^{-1}A=B$. [/mm] D.h. genau die Zeilenumformungen, die die Einheitsmatrix in [mm] $C^{-1}$ [/mm] überführt haben, überführen $A$ in $B$.
Gruß
zahlenspieler

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]