Begriffsherkunft Dualraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Woher kommt die Bezeichnung Dualraum? |
Hi,
bekanntlich ist der Dualraum [mm] $V^{\*}$ [/mm] eines n-dimensionalen Vektorraumes $V$ wie folgt definiert: [mm] $V^{\*}=\{\varphi : V \rightarrow \IK \mid \varphi\ \text{linear} \}$.
[/mm]
Die duale Basis [mm] $B^{\*}$ [/mm] irgendeiner Basis $B$ von $V$ definiert sich so: [mm] B^{\*}=\{B_{i}^{\*}:V\rightarrow\IK\mid\bigwedge_{j=1}^{n} B_{i}^{\*}(B_j)=\delta_{i,j}\}_{i\in\{1,...,n\} }.
[/mm]
Der Begriff duale Basis ist offensichtlich, weil man durch Komposition von Elementen aus $B$ mit Elementen aus [mm] $B^{\*}$ [/mm] nur Dualzahlen erhält.
Was aber steckt hinter dem Begriff Dualraum? Duale Basen haben doch keinen Einfluss auf den Raum. Worin begründet sich also diese Bezeichnung "Dualraum"? Mit anderen Worten: Was hat die Eigenschaft, ein Dualraum zu sein, mit der gewählten Dualbasis zu tun?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Grüße,
Sascha
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:08 Mo 22.04.2013 | Autor: | fred97 |
> Woher kommt die Bezeichnung Dualraum?
> Hi,
>
> bekanntlich ist der Dualraum [mm]V^{\*}[/mm] eines n-dimensionalen
> Vektorraumes [mm]V[/mm] wie folgt definiert: [mm]V^{\*}=\{\varphi : V \rightarrow \IK \mid \varphi\ \text{linear} \}[/mm].
>
> Die duale Basis [mm]B^{\*}[/mm] irgendeiner Basis [mm]B[/mm] von [mm]V[/mm] definiert
> sich so:
> [mm]B^{\*}=\{B_{i}^{\*}:V\rightarrow\IK\mid\bigwedge_{j=1}^{n} B_{i}^{\*}(B_j)=\delta_{i,j}\}_{i\in\{1,...,n\} }.[/mm]
>
> Der Begriff duale Basis ist offensichtlich, weil man durch
> Komposition von Elementen aus [mm]B[/mm] mit Elementen aus [mm]B^{\*}[/mm]
> nur Dualzahlen erhält.
>
> Was aber steckt hinter dem Begriff Dualraum? Duale Basen
> haben doch keinen Einfluss auf den Raum. Worin begründet
> sich also diese Bezeichnung "Dualraum"? Mit anderen Worten:
> Was hat die Eigenschaft, ein Dualraum zu sein, mit der
> gewählten Dualbasis zu tun?
Eine Dualbasis ist eine Basis des Dualraumes !
FRED
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Grüße,
> Sascha
|
|
|
|