www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Bedingungen für Extremwerte
Bedingungen für Extremwerte < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingungen für Extremwerte: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 00:31 Mo 14.04.2008
Autor: Theoretix

Aufgabe
Gegeben sind die Funktionen f und g mit [mm] f(x)=x^{2}-4x+6 [/mm]
und [mm] g(x)=-x^{2}+2x. [/mm] Zeigen sie, dass für alle x [mm] \in [/mm] reelle Zahlen die Bedingung
f(x)>g(x) gilt. Bestimmen sie die Stelle,  an der die Differenz der Funktionswerte
d(x)=f(x)-g(x) am kleinsten ist.

Hallo,
Ich komme grade überhaupt nicht weiter, mir fehlt jeglicher Ansatz.
Kann mir bitte jemand einen Tipp geben,
wie ich die Aufgabe lösen kann!?
Danke schonmal im Vorraus,
MFG

        
Bezug
Bedingungen für Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Mo 14.04.2008
Autor: Laserua

Hallo Theoretix!

1.)Um zu zeigen, dass f(x)>g(x) gilt, nimmst du einfach die Funktion f(x) und setzt sie > die Funktion g(x).
Es gilt dann:
f(x)>g(x)
x²-4x+6>-x²+2x
Setzt du unendlich große positive Zahlen bzw. unendlich große negative Zahlen ein, so siehst du, dass die Ungleichung erfüllt ist.

2.)Um die Stelle zu bestimmen, an der die Differenz der Funktionswerte am kleinsten ist, stellst du eine dritte Funktion auf, die folgendermaßen aussehen muss:
d(x)=f(x)-g(x)
d(x)=x²-4x+6-(-x²+2x)
Da der Abstand minimal sein muss, musst du nun den Tiefpunkt der Funktion berechnen!

Gruß,
Laserua

Bezug
                
Bezug
Bedingungen für Extremwerte: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 14:46 Mo 14.04.2008
Autor: Marc

Hallo Laserua,

> 1.)Um zu zeigen, dass f(x)>g(x) gilt, nimmst du einfach die
> Funktion f(x) und setzt sie > die Funktion g(x).
> Es gilt dann:
>  f(x)>g(x)
>  x²-4x+6>-x²+2x
>  Setzt du unendlich große positive Zahlen bzw. unendlich
> große negative Zahlen ein, so siehst du, dass die
> Ungleichung erfüllt ist.

Das reicht allerdings nicht, um die Ungleichung für alle reellen Zahlen (wie behauptet) zu zeigen.

Um es für alle zu zeigen, könnte man so vorgehen:

$x²-4x+6>-x²+2x$

[mm] $\gdw\ 2x^2-6x+6>0$ [/mm]

[mm] $\gdw\ x^2-3x+3>0$ [/mm]

quadratische Ergänzung:

[mm] $\gdw\ x^2-3x+2.25-2.25+3>0$ [/mm]

[mm] $\gdw\ (x-1,5)^2+0.75>0$ [/mm]

Und hier sieht man sehr schön, dass die Ungleichung für alle x gilt, denn [mm] $(x-1,5)^2$ [/mm] ist für alle x [mm] $\ge0$. [/mm]

Viele Grüße,
Marc

Bezug
        
Bezug
Bedingungen für Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:59 Mo 14.04.2008
Autor: Theoretix

Vielen Dank für die Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]