www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Bedingte Wahrscheinlichkeiten
Bedingte Wahrscheinlichkeiten < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:19 Di 27.10.2009
Autor: MontBlanc

Aufgabe
Gegebn sei ein Ereignis F in der Ergebnismenge [mm] \Omega [/mm] mit P(F)>0. Bedingte Wahrscheinlichkeiten definiert für die Ergebnismenge [mm] \Omega [/mm] gehorchen auch den drei Wahrscheinlichkeitsaxiomen für Ereignisse $ [mm] E_1,E_2\subseteq\Omega [/mm] $.
(I) $ [mm] 0\le P(E_1|F)\le [/mm] 1 $
(II) $ [mm] P(\Omega [/mm] | F)=1 $
(III) $ [mm] E_1 \cap E_2=\emptyset \Rightarrow P(E_1\cup E_2 [/mm] | [mm] F)=P(E_1 [/mm] | [mm] F)+P(E_2 [/mm] | F) $
Bestätigen Sie diese Tatsache unter Verwendung von relativen Häufigkeiten.

Hallo,

zu (I)

also, es ist mal vorgegeben, dass wir relative Häufigkeiten nutzen sollen. Für eine Wahrscheinlichkeit gilt ja demnach:

(1) [mm] P(F)=\bruch{n_F}{n_{Total}} [/mm] für [mm] n_{Total}\rightarrow\infty [/mm]

(2) [mm] P(E_1|F)=\bruch{P(E_1 \cap F)}{P(F)} [/mm]

Ich kann erschließen, dass [mm] P(E_1 \cap [/mm] F) [mm] \le [/mm] P(F) . Für P(F) kann ich aus (1) dann zeigen, dass :

Für [mm] n_F=0 [/mm] ist P(F)=0 für [mm] n_F\rightarrow\infty [/mm] ist P(F)=1 also muss das auch für [mm] P(E_1 \cap [/mm] F) aus der (2) gelten. Wenn jetzt auch [mm] P(E_1 \cap [/mm] F) [mm] \le [/mm] P(F) gilt muss auch [mm] P(E_1|F) [/mm] zwischen 0 und 1 liegen.

Für das zweite Axiom bin ich mir nicht ganz sicher:

$ P( [mm] \Omega \cap [/mm] F)=P(F) $ Für P(F) habe ich in (I) gezeigt, dass es zwischen 0 und 1 liegt. nach der def. (2) teile ich dann P(F) durch P(F) und erhalte zwangsläufig 1.

für (III) habe ich leider keine idee, vielleicht kann mir jemand auf die sprünge helfen.

lg,

exeqter

        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 10:27 Mi 28.10.2009
Autor: felixf

Hallo exeqter

> Gegebn sei ein Ereignis F in der Ergebnismenge [mm]\Omega[/mm] mit
> P(F)>0. Bedingte Wahrscheinlichkeiten definiert für die
> Ergebnismenge [mm]\Omega[/mm] gehorchen auch den drei
> Wahrscheinlichkeitsaxiomen für Ereignisse
> [mm]E_1,E_2\subseteq\Omega [/mm].
>  (I) [mm]0\le P(E_1|F)\le 1[/mm]
>  (II)
> [mm]P(\Omega | F)=1[/mm]
>  (III) [mm]E_1 \cap E_2=\emptyset \Rightarrow P(E_1\cup E_2 | F)=P(E_1 | F)+P(E_2 | F)[/mm]
>  
> Bestätigen Sie diese Tatsache unter Verwendung von
> relativen Häufigkeiten.
>  
> zu (I)
>
> also, es ist mal vorgegeben, dass wir relative
> Häufigkeiten nutzen sollen. Für eine Wahrscheinlichkeit
> gilt ja demnach:
>  
> (1) [mm]P(F)=\bruch{n_F}{n_{Total}}[/mm] für
> [mm]n_{Total}\rightarrow\infty[/mm]

Was sollen [mm] $n_F$ [/mm] und [mm] $n_{Total}$ [/mm] sein? Und bist du dir sicher, das hier mit einem Grenzuebergang gearbeitet wird und nicht einfach Kardinalitaeten von endlichen Mengen betrachtet werden?

> (2) [mm]P(E_1|F)=\bruch{P(E_1 \cap F)}{P(F)}[/mm]
>  
> Ich kann erschließen, dass [mm]P(E_1 \cap[/mm] F) [mm]\le[/mm] P(F) . Für
> P(F) kann ich aus (1) dann zeigen, dass :
>  
> Für [mm]n_F=0[/mm] ist P(F)=0 für [mm]n_F\rightarrow\infty[/mm] ist P(F)=1

???

> also muss das auch für [mm]P(E_1 \cap[/mm] F) aus der (2) gelten.

Was muss dafuer gelten?

> Wenn jetzt auch [mm]P(E_1 \cap[/mm] F) [mm]\le[/mm] P(F) gilt muss auch
> [mm]P(E_1|F)[/mm] zwischen 0 und 1 liegen.

Ja, und [mm] $P(E_1 \cap [/mm] F) [mm] \le [/mm] P(F)$ musst du zeigen.

Wenn du die richtige Definition von $P$ hast, dann ist das auch recht einfach.

> Für das zweite Axiom bin ich mir nicht ganz sicher:
>  
> [mm]P( \Omega \cap F)=P(F)[/mm] Für P(F) habe ich in (I) gezeigt,
> dass es zwischen 0 und 1 liegt. nach der def. (2) teile ich
> dann P(F) durch P(F) und erhalte zwangsläufig 1.

Ja.

> für (III) habe ich leider keine idee, vielleicht kann mir
> jemand auf die sprünge helfen.

Wenn [mm] $E_1 \cap E_2 [/mm] = [mm] \emptyset$ [/mm] ist, dann gilt auch [mm] $(E_1 \cap [/mm] F) [mm] \cap (E_2 \cap [/mm] F) = [mm] \emptyset$ [/mm] und somit [mm] $P(E_1 \cap [/mm] F) + [mm] P(E_2 \cap [/mm] F) = [mm] P((E_1 \cap [/mm] F) [mm] \cup (E_2 \cap [/mm] F))$.

LG Felix


Bezug
                
Bezug
Bedingte Wahrscheinlichkeiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 28.10.2009
Autor: MontBlanc

hi,

das problem ist, dass ich die fragen immer aus dem englischen übersetze, dabei geht eventuell ab und zu etwas verloren. das tut mir leid und daher bin ich dir umso dankbarer für die antwort!

[mm] n_F [/mm] soll die Anz. des vorkommens von ereignis F sein. und [mm] n_{Total} [/mm] soll die gesamtzahl der ereignisse darstellen. Jetzt git für [mm] P(F)=\bruch{n_F}{N_{Total}}. [/mm]

In einem Hinweis wurde konkret gesagt, dass wir mit [mm] n_{Total}\rightarrow\infty [/mm] arbeiten sollen und daraus zeigen, dass die Axiome gelten.

Dann habe ich die Definition von bedingten Wahrscheinlichkeiten genutzt: also, dass [mm] P(E_1|F)=\bruch{P(E_1 \cap F}{P(F)}. [/mm] So jetzt habe ich festgestellt, dass wenn ich [mm] \bruch{P(E_1 \cap F}{P(F)} [/mm] schreibe, kann ich dies laut def. ja ersetzen durch: [mm] \bruch{\bruch{n_{E_1 \cap F}}{n_{Total}}}{\bruch{n_F}{n_{Total}}}=\bruch{n_{E_1 \cap F}}{n_F} [/mm] .

Ich weiß, dass [mm] n_{E_1 \cap F} \le n_F [/mm] und daraus folt ja dann, dass [mm] P(E_1|F) [/mm] zwischen 0 und 1 liegen muss.

ähnlich hab ichs auch für das zweite axiom gemacht.

aber wie würde jetzt mit dieser methode das dritte axiom zu beweisen sein ?

lg,

exe



Bezug
                        
Bezug
Bedingte Wahrscheinlichkeiten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mi 28.10.2009
Autor: felixf

Hallo exe!

> das problem ist, dass ich die fragen immer aus dem
> englischen übersetze, dabei geht eventuell ab und zu etwas
> verloren. das tut mir leid und daher bin ich dir umso
> dankbarer für die antwort!

Kein Problem :)

> [mm]n_F[/mm] soll die Anz. des vorkommens von ereignis F sein. und
> [mm]n_{Total}[/mm] soll die gesamtzahl der ereignisse darstellen.
> Jetzt git für [mm]P(F)=\bruch{n_F}{N_{Total}}.[/mm]
>  
> In einem Hinweis wurde konkret gesagt, dass wir mit
> [mm]n_{Total}\rightarrow\infty[/mm] arbeiten sollen und daraus
> zeigen, dass die Axiome gelten.

Das ist aber eine sehr schwammige Definition fuer $P(F)$.

> Dann habe ich die Definition von bedingten
> Wahrscheinlichkeiten genutzt: also, dass
> [mm]P(E_1|F)=\bruch{P(E_1 \cap F}{P(F)}.[/mm] So jetzt habe ich
> festgestellt, dass wenn ich [mm]\bruch{P(E_1 \cap F}{P(F)}[/mm]
> schreibe, kann ich dies laut def. ja ersetzen durch:
> [mm]\bruch{\bruch{n_{E_1 \cap F}}{n_{Total}}}{\bruch{n_F}{n_{Total}}}=\bruch{n_{E_1 \cap F}}{n_F}[/mm]
> .

Genau.

> Ich weiß, dass [mm]n_{E_1 \cap F} \le n_F[/mm] und daraus folt ja
> dann, dass [mm]P(E_1|F)[/mm] zwischen 0 und 1 liegen muss.

Daraus folgt, dass es [mm] $\le [/mm] 1$ ist. Dass es [mm] $\ge [/mm] 0$ ist folgt daraus, dass [mm] $n_{E_1 \cap F}$ [/mm] und [mm] $n_F$ [/mm] nicht-negativ sind.

> ähnlich hab ichs auch für das zweite axiom gemacht.
>  
> aber wie würde jetzt mit dieser methode das dritte axiom
> zu beweisen sein ?

Wenn [mm] $E_1 \cap E_2 [/mm] = [mm] \emptyset$ [/mm] ist, dann gilt [mm] $n_{E_1} [/mm] + [mm] n_{E_2} [/mm] = [mm] n_{E_1 \cup E_2}$. [/mm] Kommst du damit weiter?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]