www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Bedingte Wahrscheinlichkeit
Bedingte Wahrscheinlichkeit < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bedingte Wahrscheinlichkeit: Krank / Test
Status: (Frage) beantwortet Status 
Datum: 16:29 Mi 04.11.2009
Autor: Kubs

Aufgabe

Über eine bestimmte Stoffwechselkrankheit is bekannt, dass sie ca. eine von 150 Personen befällt. Ein recht zuverlässiger Test fällt bei tatsächlich erkrankten Personen mit einer Wahrscheinlichkeit von 97% positiv aus. Bei Personen , die nicht krank sind, fällt er mit 95% Wahrscheinlichkeit negativ aus.
a)Jemand lässt sich testen und erhält ein positives Resultat. Mit welcher Wahrscheinlichketi ist er tatsächlich erkrankt?

b) Wie groß ist die Wahrscheinlichkeit, dass man bei einem negativen Ergebnis tatsächlich nicht krank ist?



Ich würde diese Aufgabe versuchen mit einem Baumdiagramm zu lösen.. die ersten 2Pfade sind dann erstmal krank und nicht krank...krank wäre dann 1/150 und nicht krank dann 149/150. dann bekommen die beiden ende noch jeweils 2pfade mit Test positiv und Test negativ. positiv wär bei den kranken dann 97% und negativ 3% und bei den erkrankten positiv 5% und negativ 95%...

ist mein Ansatz soweit richtig?? wie muss ich jetzt fortfahren??



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 04.11.2009
Autor: Al-Chwarizmi

Hallo Kubs,

zuerst dachte ich bei der Überschrift "Krank/Test",
dass das eine Art Hilferuf sein könnte von der Art:
"Hilfe, ich war zwei Wochen krank und muss über-
morgen einen Mathetest schreiben !"




> Über eine bestimmte Stoffwechselkrankheit ist bekannt, dass
> sie ca. eine von 150 Personen befällt. Ein recht
> zuverlässiger Test fällt bei tatsächlich erkrankten
> Personen mit einer Wahrscheinlichkeit von 97% positiv aus.
> Bei Personen , die nicht krank sind, fällt er mit 95%
> Wahrscheinlichkeit negativ aus.
>  a) Jemand lässt sich testen und erhält ein positives
> Resultat. Mit welcher Wahrscheinlichkeit ist er
> tatsächlich erkrankt?
>  
> b) Wie groß ist die Wahrscheinlichkeit, dass man bei einem
> negativen Ergebnis tatsächlich nicht krank ist?
>  
>
>
> Ich würde diese Aufgabe versuchen mit einem Baumdiagramm
> zu lösen.. die ersten 2Pfade sind dann erstmal krank und
> nicht krank...krank wäre dann 1/150 und nicht krank dann
> 149/150. dann bekommen die beiden ende noch jeweils 2pfade
> mit Test positiv und Test negativ. positiv wär bei den
> kranken dann 97% und negativ 3% und bei den erkrankten
> positiv 5% und negativ 95%...
>  ist mein Ansatz soweit richtig??

    [daumenhoch]   Ja.


> wie muss ich jetzt fortfahren??


Bei a) ist die bedingte Wahrscheinlichkeit gefragt, dass
eine Person, die "positiv" getestet wurde, tatsächlich
krank ist. Das berechnet sich so:

   $\ P(krank\ |\ Test\ positiv)\ =\ [mm] \frac{P(krank\ und\ Test\ positiv)}{P(Test\ positiv)}$ [/mm]

Um den Nenner, also $\ P(Test\ positiv)$ zu berechnen, musst du
die zwei dazu gehörigen Produkte aus dem Baum addieren:

   $\ P(Test\ positiv)\ =\ P(krank\ und\ Test\ positiv)+P(gesund\ und\ Test\ positiv)$


LG    Al-Chw.

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: Top
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Mi 04.11.2009
Autor: Kubs

Dankeschöööön =)

Bezug
                
Bezug
Bedingte Wahrscheinlichkeit: ka
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 04.11.2009
Autor: Kubs

Aufgabe
ich komm auf 1,2%

kann mir jemand die a) einfach vorrechnen?

Bezug
                        
Bezug
Bedingte Wahrscheinlichkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Mi 04.11.2009
Autor: nooschi

wie oben steht musst du die Formel anwenden:

$ \ P(krank\ |\ Test\ positiv)\ =\ [mm] \frac{P(krank\ und\ Test\ positiv)}{P(Test\ positiv)} [/mm] $

P(krank und Test Positiv) = 1/150 * 0.97
P(Test positiv) = 1/150 * 0.97 + (1 - 1/150) * 0.05

Endergebnis ist 0.1152019002...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]