Bedeutung metrischer Tensoren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:13 Mo 04.01.2010 | Autor: | AT-Colt |
Hallihallo,
ich bin ziemlich am Ende meines Mathematikstudiums und musste nun feststellen, dass der Kelch der metrischen Tensoren wohl an mir vorübergegangen ist. Ich würde mich freuen, wenn jemand Licht in folgendes Dunkel bringen könnte:
Wir befinden uns im [mm] $\IR^{n}$ [/mm] und haben eine Basis dort gegeben. Im Großen und Ganzen sollen das $n$ Vektoren sein wie beim bekannten und geliebten kartesischen Koordinatensystem, nur nicht zwangsweise normiert und auch nicht orthogonal zueinander. Seien die Basisvektoren dieser windschiefen Basis mit [mm] $\underline{e}_i$ [/mm] bezeichnet.
Dann sind die Einträge des metrischen Tensors [mm] $G_{kart} [/mm] = [mm] (g_{ij})_{ij}$ [/mm] gerade die Skalarprodukte der Vektoren [mm] $\underline{e}_i$ [/mm] und [mm] $\underline{e}_j$.
[/mm]
Für den Fall [mm] $G_{kart} [/mm] = [mm] diag(1,\dots [/mm] ,1)$ liegt gerade ein Orthonormalsystem vor. Für den Fall $n=3$ nimmt $G$ für den Fall von Kugelkoordinaten gerade die Gestalt [mm] $G_{kugel} [/mm] = [mm] (1,r^2,r^2sin^2(\theta))$ [/mm] an. Im allgemeinen Fall ist [mm] $G_{kugel}$ [/mm] die Matrix der induzierten metrischen Tensoren [mm] $b_{\mu\nu} [/mm] = [mm] g_{ij}\bruch{\partial x_i}{\partial q_\mu}\bruch{\partial x_j}{\partial q_\nu}$ [/mm] mit [mm] $\mu$, $\nu [/mm] = r, [mm] \theta_{1}, \dots [/mm] , [mm] \theta_{n-1}$. [/mm] (Summenkonvention)
[mm] $G_{kart}$ [/mm] lässt sich ohne Probleme als Matrix auffassen, mit Eigenwerten, etc., aber wie müsste man unter dem Gesichtspunkt, dass [mm] $G_{kugel}$ [/mm] dieselbe lineare Abbildung ist, diese Darstellung des metrischen Tensors lesen?
[mm] $G_{kart}\vektor{x_1 \\ \vdots \\ x_n} [/mm] = [mm] \lambda\vektor{x_1 \\ \vdots \\ x_n}$ [/mm] ist verständlich, aber was ist mit [mm] $G_{kugel}\vektor{r \\ \theta_1 \\ \vdots \\ \theta_{n-1}}$?
[/mm]
Sagen wir, $G$ aufgefasst als lineare Abbildung wäre positiv definit und nehme in Kugelkoordinaten die Blockdiagonalform [mm] $G_{kugel} [/mm] = [mm] Diag(1,B(r,\theta))$ [/mm] an (B sei nur der Teil des induzierten Tensors mit zwei Winkelableitungen). Wie kann ich mir klarmachen, dass auch $B$ positiv definit ist?
Sich $B$ auszurechnen führt zu keinem offensichtlichen Ergebnis, zuviele Sinen und Cosinen mit zu verschiedenen Faktoren.
Der Hintergrund dieser Frage besteht in der Differentialgeometrie. Ich habe eine DGL [mm] $\nabla(A(x)\nabla [/mm] u(x)) = 0$ gegeben, wobei durch das $A(x)$ im Gegensatz zur Identität gemischte Ableitungen auftreten. Mit einer anderen Metrik lässt sich diese DGL zurückführen auf [mm] $\nabla_{M}(\nabla_{M}u(x)) [/mm] = 0$.
Durch die besonderen Formen von Gradient und Divergenz in diesen neuen Koordinaten tritt in Kugelkoordinaten der Term [mm] $\left(\bruch{\partial u}{\partial\theta}\right)^{T}B(r,\theta)\bruch{\partial u}{\partial\theta}$ [/mm] auf. [mm] ($\left(\bruch{\partial u}{\partial\theta}\right)^{T} [/mm] = [mm] \left(\bruch{\partial u(r,\theta)}{\partial \theta_{1}},\dots ,\bruch{\partial u(r,\theta)}{\partial \theta_{n-1}}\right)$)
[/mm]
Ich hoffe, jemand kann mir die Mystik dahinter erklären.
greetz
AT-Colt
Disclaimer:
Ich habe diese Frage nur hier gestellt, sie trat beim durchlesen eines Papers auf, welches ich im Rahmen meiner Diplomarbeit zur Recherche herangezogen habe. Es geht mir explizit nicht um einen Beweis, sondern ums grundlegende Verständis dieses Interpretationsproblems, insofern hoffe ich, hier nicht gegen Berufsethik zu verstoßen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:31 Fr 08.01.2010 | Autor: | rainerS |
Hallo!
> Hallihallo,
>
> ich bin ziemlich am Ende meines Mathematikstudiums und
> musste nun feststellen, dass der Kelch der metrischen
> Tensoren wohl an mir vorübergegangen ist. Ich würde mich
> freuen, wenn jemand Licht in folgendes Dunkel bringen
> könnte:
>
> Wir befinden uns im [mm]\IR^{n}[/mm] und haben eine Basis dort
> gegeben. Im Großen und Ganzen sollen das [mm]n[/mm] Vektoren sein
> wie beim bekannten und geliebten kartesischen
> Koordinatensystem, nur nicht zwangsweise normiert und auch
> nicht orthogonal zueinander. Seien die Basisvektoren dieser
> windschiefen Basis mit [mm]\underline{e}_i[/mm] bezeichnet.
>
> Dann sind die Einträge des metrischen Tensors [mm]G_{kart} = (g_{ij})_{ij}[/mm]
> gerade die Skalarprodukte der Vektoren [mm]\underline{e}_i[/mm] und
> [mm]\underline{e}_j[/mm].
>
> Für den Fall [mm]G_{kart} = diag(1,\dots ,1)[/mm] liegt gerade ein
> Orthonormalsystem vor. Für den Fall [mm]n=3[/mm] nimmt [mm]G[/mm] für den
> Fall von Kugelkoordinaten gerade die Gestalt [mm]G_{kugel} = (1,r^2,r^2sin^2(\theta))[/mm]
> an. Im allgemeinen Fall ist [mm]G_{kugel}[/mm] die Matrix der
> induzierten metrischen Tensoren [mm]b_{\mu\nu} = g_{ij}\bruch{\partial x_i}{\partial q_\mu}\bruch{\partial x_j}{\partial q_\nu}[/mm]
> mit [mm]\mu[/mm], [mm]\nu = r, \theta_{1}, \dots , \theta_{n-1}[/mm].
> (Summenkonvention)
>
> [mm]G_{kart}[/mm] lässt sich ohne Probleme als Matrix auffassen,
> mit Eigenwerten, etc., aber wie müsste man unter dem
> Gesichtspunkt, dass [mm]G_{kugel}[/mm] dieselbe lineare Abbildung
> ist, diese Darstellung des metrischen Tensors lesen?
>
> [mm]G_{kart}\vektor{x_1 \\ \vdots \\ x_n} = \lambda\vektor{x_1 \\ \vdots \\ x_n}[/mm]
> ist verständlich, aber was ist mit [mm]G_{kugel}\vektor{r \\ \theta_1 \\ \vdots \\ \theta_{n-1}}[/mm]?
>
> Sagen wir, [mm]G[/mm] aufgefasst als lineare Abbildung wäre positiv
> definit und nehme in Kugelkoordinaten die Blockdiagonalform
> [mm]G_{kugel} = Diag(1,B(r,\theta))[/mm] an (B sei nur der Teil des
> induzierten Tensors mit zwei Winkelableitungen). Wie kann
> ich mir klarmachen, dass auch [mm]B[/mm] positiv definit ist?
Nimm dir deine Koordinatendarstellung [mm]b_{\mu\nu} = g_{ij}\bruch{\partial x_i}{\partial q_\mu}\bruch{\partial x_j}{\partial q_\nu}[/mm]: es ist zu zeigen, dass
[mm] v_\mu b_{\mu\nu} v_\nu > 0[/mm]
für alle Vektoren [mm] $v\not=0$. [/mm] Einsetzen ergibt:
[mm] v_\mu b_{\mu\nu} v_\nu = v_\mu g_{ij}\bruch{\partial x_i}{\partial q_\mu}\bruch{\partial x_j}{\partial q_\nu} v_\nu = \left(v_\mu\bruch{\partial x_i}{\partial q_\mu}\right) g_{ij} \left(\bruch{\partial x_j}{\partial q_\nu} v_\nu\right) = u_i g_{ij} u_j > 0 [/mm],
da der Vektor [mm] u_j = \bruch{\partial x_j}{\partial q_\nu} v_\nu [/mm] nicht der Nullvektor ist: die Koordinatentransformation ist invertierbar und die Determinante der Jacobimatrix $ [mm] \bruch{\partial x_j}{\partial q_\nu}$ [/mm] ist daher ungleich 0.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:47 Fr 08.01.2010 | Autor: | AT-Colt |
Klassischer Fall von "Da hätte man jetzt eigentlich auch selbst drauf kommen können..." ^^;
Diese Momente bei der Arbeit stören mich schon ein wenig: Man verrennt sich in einen Gedanken und sieht naheliegende Lösungen nicht mehr...
Aber vielen lieben Dank für die Hilfe, das erhöht mein Verständnis dieser Tensoren enorm.
Gruß,
AT-Colt
|
|
|
|