www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Bayes Entscheidungstheorie
Bayes Entscheidungstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bayes Entscheidungstheorie: Minimax für Klassifikation
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 08:29 Sa 18.12.2021
Autor: marthasmith

<br>Ich arbeite mich gerade durch das Buch von Duda "Pattern Classification" und habe im Großen und Ganzen das Kapitel 2 bearbeitet und bin bei der Aufgabe 2.e:
Nehmen Sie an es sind 2 eindimensionale Normalverteilungen [mm]p(x|\omega_1) \tilde{} \mathcal{N}(0,1)[/mm] und
[mm] p(x|\omega_2) \tilde{} \mathcal{N}(1/2,1/4) [/mm] unter Berücksichtigung von zero-one-loss. Wie lautet das [mm]x*[/mm] und der gesamte
minimax Verlust?<br>

Als Ergänzung: In dem Buch wird aus der Bayes Formel
[mm] P(\omega_j|x)=\frac{p(x|\omega_j)P(\omega_j)}{p(x)} [/mm]
Also das posterior wird mit großem P und das likelihood mit kleinem p bezeichnet. Weiß jetzt nicht so, ob das für die folgenden Gedanken
relevant ist...

Als weitere Ergänzung: Die Klassifikation in zwei Kategorien unterliegt der Entscheidung des kleineren Risikos:
[mm]R(\alpha_1|x)=\lambda_{11}P(\omega_1|x)´+\lambda_{12}P(\omega_2|x)[/mm]
[mm]R(\alpha_2|x)=\lambda_{21}P(\omega_1|x)´+\lambda_{22}P(\omega_2|x)[/mm]
wobei [mm]\lambda_{ij}[/mm] die Verlustfunktion ist.

Imm allgemeinen entscheide ich mich für dasjenige Risiko das kleiner ist und entscheide mich für [mm]\omega_1[/mm] wenn gilt:
[mm] (\lambda_{21}-\lambda_{11})P(\omega_1|x)>(\lambda_{12}-\lambda_{22})P(\omega_2|x) [/mm] und unter Verwendung der Formel von Bayes
kann das ganze auch geschrieben werden als:
[mm] \frac{p(x|\omega_1)}{p(x|\omega_2)}>\frac{\lambda_{12}-\lambda_{22}}{\lambda_{21}-\lambda_{11}}\frac{P(\omega_2)}{P(\omega_1)}[/mm]
Bei der zero-one-loss gilt:
[mm]\lambda_{ij}=0[/mm] für [mm]i=j[/mm] und [mm] \lambda_{ij}=1[/mm] für [mm]i~=j[/mm].
so dass sich das noch vereinfacht. Mein Gedanke: Also brauche ich prinzipiell nur den Quotienten [mm]\frac{p(x|\omega_1)}{p(x|\omega_2)}[/mm]
zu bestimmen und habe im Schnittpunkt die Lösungen.

Aus dem Buch entnehme ich, dass die Lösung eigentlich ohne Rechnung zu sehen sein müsste und in Abhängigkeit von [mm]\mu[/mm] und [mm]\sigma[/mm] sein müsste.
Prinzipiell weiß ich wie die Normalverteilungen aussehen, habe sie mir aber nochmal mit Matlab geplottet und es gibt (wie angenommen zwei Schnittstellen).
Ich habe das Bild auch angehängt, aber es dauert ja immer ein wenig bis die hochgeladen sind und es ist dann auch kein so großer Mehrwert.

Nun habe ich mich also zu Fuß an die Berechnung gemacht, bin ein wenig aus der Übung aber:

[mm] \frac{\frac{1}{2\sprt{\Pi}} e^{0.5x^2} } {\frac{1}{\sprt{\Pi}}e^{0.5(4x-2)^2}}[/mm]
Und habe irgendwie das Gefühl auf dem Holzweg zu sein.

Könnte mir jemand weiterhelfen. Das wäre klase und da ich mir vorgenommen habe das Buch weiter durchzuarbeiten, kommen sicherlich noch weitere Fragen.
Tausend Dank

Marthasmith

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Bayes Entscheidungstheorie: hat sich erledigt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:12 Mi 22.12.2021
Autor: marthasmith

Guten Tag alle zusammen,
nach vielem Probieren hat sich meine Frage erledigt und die Lösung ist auch - wie so häufig - sehr einfach. Ich habe mich einfach verrechnet und es ist der natürliche Logarithmus des Quotienten der beiden Wahrscheinlichkeitsdichtefunktionen zu berechnen.

Wer immer es kann, könnte also den STatus meiner Frage auf "grün" ändern.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]