www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Bayes-Aufgabe richtig?
Bayes-Aufgabe richtig? < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bayes-Aufgabe richtig?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Mo 08.07.2019
Autor: elektroalgebra93

Aufgabe
Es finden Prüfungen statt, je eine pro Studierendem. Von 80 Teilnehmern in Mathematik seien 50% durchgefallen. Durchfallquote in Spanisch sei bei 50 Teilnehmern, 30%. In Physik ist nur ein Student von 15 Teilnehmern durchgefallen.
-> Mit Welcher Wahrscheinlichkeit hat ein zufällig ausgewählter Student seine Prüfung nicht bestanden
-> Mit welcher wahrscheinlichkeit hat ist ein zufällig ausgewählter Student, der eine Prüfung nicht bestanden hat, in Physik durchgefallen?

Hallo an alle

Wollte wissen ob meine Lösung zu der Aufgabe richtig ist.

Im ganzen 145 Teilnehmer.
Also:

Die Wahrscheinlichkeiten der Prüfungen:
P(Mathematik) = 100/145 * 80 = 55%
P(Spanisch) = 100/145 * 50 = 35 %
P(Physik) = 100/145 * 15 = 10%

d=durchgefallen
P(d | Mathematik) = 50%
P(d | Spanisch) = 30%
P(d | Physik) = 1/15 * 100 = 6,6 = 7%
Stimmt das bis hier hin?

-----

-> Mit Welcher Wahrscheinlichkeit hat ein zufällig ausgewählter Student seine Prüfung nicht bestanden:
P(d) = P(Mathematik)  * P(d | Mathematik) + P(Spanisch) * P(d | Spanisch) + P(Physik)  * P(d | Physik)  = 55% * 50% + 35% * 30% + 10% * 7% =  39%

-> Mit welcher wahrscheinlichkeit hat ist ein zufällig ausgewählter Student, der eine Prüfung nicht bestanden hat, in Physik durchgefallen?
P(Physik | d) = [mm] \bruch{P(d | Physik) * P(Physik)}{P(d)} [/mm] = [mm] \bruch{7 * 10}{39} [/mm] = 1,79%

Was sagt ihr dazu ?

Vielen Dank

        
Bezug
Bayes-Aufgabe richtig?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mo 08.07.2019
Autor: HJKweseleit

Alles richtig. Aber es tut weh. Du schießt mit Kanonen auf Spatzen.

Von 145 Studenten sind 56 durchgefallen. Also ist die W., dass ein Student durchgefallen ist, 56/145.

Von 56 Durchgefallenen ist einer Ph-Student, also ist die W., dass ein Durchgefallener in Physik durchgefallen ist, 1/56.

Man kann auch mit dem Hubschrauber zum Bäcker fahren oder Flächen von Quadraten per Integral berechnen...


Bezug
                
Bezug
Bayes-Aufgabe richtig?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:31 Di 09.07.2019
Autor: elektroalgebra93

Danke für deine Antwort. Bin froh dass es richtig ist, da in der Musterlösung 15% als P(d | Physik) benutzt worden ist, was aber meiner Meinung nach keinen Sinn ergibt.

Und natürlich hast du vollkommen Recht-bei dieser Aufgabe ging es jedoch darum den Bayes Theorem anzuwenden.

Liebe Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]