www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Basistransformation
Basistransformation < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basistransformation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Mi 21.03.2007
Autor: Leader

Aufgabe
Beispiel:

Sei K ein 2-dimensionaler Vektorraum mit der Standardbasis B1.

Gegeben sei der Koordinatenvektor A := [mm] \vektor{2 \\ 5} [/mm] bezüglich B1.

Sei nun B2 eine andere Basis des Raums [mm] K^2. [/mm]

B2 := [mm] \vektor{1 \\ 2}, \vektor{1 \\ 1} [/mm]

Wie lautet nun der Koordinatenvektor A bezüglich der Basis B2?

Hallo.


Ich habe eine Frage zur Basistransformation, weil ich hierbei immer noch nicht richtig durchblicke.
Wie müsste ich vorgehen, um die obige Beispielaufgabe zu lösen? In unserem Matheskript steht irgendetwas von einer inversen Transformationsmatrix, ich weiß aber nicht konkret, wie man die bildet bzw. wie man dann auf die Koordinaten des Koordinatenvektors bezüglich einer anderen Basis gelangt.

Freundliche Grüße,
Leader.


        
Bezug
Basistransformation: Antwort
Status: (Antwort) fertig Status 
Datum: 13:19 Mi 21.03.2007
Autor: angela.h.b.


> Beispiel:
>  
> Sei K ein 2-dimensionaler Vektorraum mit der Standardbasis
> B1.
>  
> Gegeben sei der Koordinatenvektor A := [mm]\vektor{2 \\ 5}[/mm]
> bezüglich B1.
>  
> Sei nun B2 eine andere Basis des Raums [mm]K^2.[/mm]
>
> B2 := [mm]\vektor{1 \\ 2}, \vektor{1 \\ 1}[/mm]
>  
> Wie lautet nun der Koordinatenvektor A bezüglich der Basis
> B2?

.

>  Wie müsste ich vorgehen, um die obige Beispielaufgabe zu
> lösen?

Hallo,

wenn Du [mm] \vektor{2 \\ 5}_{B_1} [/mm] bzgl. [mm] B_2 [/mm] darstellen möchtest,
mußt Du die a,b finden mit

[mm] a\vektor{1 \\ 2}+b\vektor{1 \\ 1}=\vektor{2 \\ 5}, [/mm]

was auf die Lösung eines LGS hinausläuft.

Hast Du a und b gefunden, dann ist [mm] \vektor{2 \\ 5}_{B_1}=\vektor{a \\ b}_{B_2}. [/mm]



In unserem Matheskript steht irgendetwas von einer

> inversen Transformationsmatrix, ich weiß aber nicht
> konkret, wie man die bildet bzw. wie man dann auf die
> Koordinaten des Koordinatenvektors bezüglich einer anderen
> Basis gelangt.

So kann man das auch machen.
Das geht so:

steckst Du die Spalten von [mm] B_2 [/mm] in eine Matrix [mm] M:=\pmat{ 1 & 1 \\ 2 & 1 }, [/mm]

so ist das die Matrix, welche Dir [mm] B_2 [/mm] in Koordinaten bzgl. [mm] B_1 [/mm] liefert.

Stecke ich den ersten Basisbektor von [mm] B_2 [/mm] in Koordinaten bzgl. [mm] B_2 [/mm] hinein, [mm] \vektor{1 \\ 0}_{B_2}, [/mm] so erhalte ich genau diesen Vektor in Koordinaten bzgl. [mm] B_1, [/mm] der kanonischen Basis. Probier's aus.

Willst Du Vektoren, die in Koordinaten bzgl. der Standardbasis gegeben sind, umwandeln in solche in Koordinaten bzgl. [mm] B_2, [/mm]

kannst Du das erreichen, indem Du sie mit [mm] M^{-1} [/mm] multiplizierst.

[mm] M^{-1} [/mm] ist die Matrix, die Dir die Transformation von [mm] B_1 [/mm] nach [mm] B_2 [/mm] durchführt.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]