www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basisergänzungssatz
Basisergänzungssatz < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basisergänzungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Mo 07.01.2008
Autor: hundert

Aufgabe
Seien [mm] v_1, v_2, w_1,..,w_5 [/mm] die folgenden Vektoren in [mm] \IR^4 [/mm] :
[mm] v_1=\vektor{1\\1\\0\\0}, v_2=\vektor{0\\0\\1\\0}, w_1=\vektor{2\\3\\1\\1}, w_2=\vektor{1\\2\\2\\1}, w_3=\vektor{1\\2\\1\\1}, w_4=\vektor{2\\1\\1\\1}, [/mm]
[mm] w_5\vektor{1\\1\\1\\2} [/mm]

Für i=0,...,5 sei [mm] U_i:= L(v_1,v_2,w_1,w_i). [/mm] Geben sie die Basen der [mm] U_i's [/mm] an und bestimmen sie s>=0 sowie j(1),...j(s) [mm] \in \{1,...,5\} [/mm] wie im basisergänzungssatz sagass [mm] (v_1,v_2,w_j_(_1_),...,w_j_(_s_) [/mm] eine basis von  [mm] \IR^4 [/mm] ist.

meine überlegung dazu: also erstmal hab ich bewiesen, dass [mm] v_1 [/mm] und [mm] v_2 [/mm] linear  unabhängig sind. dann kann man laut satz durch hinzunahme von geeigneten vektoren aus  [mm] w_1,...,w_5 [/mm] zu einer basis von V ergänzen.

also [mm] U_1:=L(v_1,v_2,w_1) [/mm] jetzt soll ich ja die basis angeben,.. [mm] u_1 [/mm] ist dreidimensional da 3 lin unabhängige vektoren vorhanden. also ist [mm] v_1,v_2,w_1 [/mm] ja schon eine basis oder?(verwechsel ich da was) kommt mir asehr einfach vor.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basisergänzungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 Mo 07.01.2008
Autor: barsch

Hi,

> also ist $ [mm] v_1,v_2,w_1 [/mm] $ ja schon eine basis oder?(verwechsel ich da was) kommt mir asehr einfach vor.

Wir befinden uns jedoch im [mm] \IR^4, [/mm] dass heißt, es können höchstens vier Vektoren [mm] x_i\in\IR^4 [/mm] mit i=1,2,3,4 linear unabhängig sein.

Und im [mm] \IR^4 [/mm] bilden genau 4 linear unabhängige Vektoren [mm] x_i\in\IR^4 [/mm] mit i=1,2,3,4 eine Basis. Drei linear unabhängige Vektoren können demnach keine Basis des [mm] \IR^4 [/mm] bilden.

Und ob [mm] v_1,v_2 [/mm] und [mm] w_1 [/mm] wirklich linear unabhängig sind, muss man auch noch prüfen.


Zunächst einmal ist definiert:

[mm] U_i:= L(v_1,v_2,w_1,w_i), [/mm] dass heißt:

[mm] U_1= L(v_1,v_2,w_1,w_1)= L(v_1,v_2,w_1). [/mm]



Jetzt musst du prüfen, ob die Vektoren linear unabhängig sind. Dass ist der Fall, wenn

[mm] \lambda_1*v_1+\lambda_2*v_2+\lambda_3*w_1=0 \gdw\lambda_1=\lambda_2=\lambda_3=0 [/mm]


Diese Vorgehensweise kannst du auch bei [mm] U_2,...,U_5 [/mm] verfolgen.


MfG barsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]