www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basisergänzungssatz
Basisergänzungssatz < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basisergänzungssatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:54 Mo 26.09.2016
Autor: DerPinguinagent

Aufgabe
V K-VR. Dann lässt sich jede linear unabhängige Familie in V zu einer Basis ergänzen. (Tipp benutze das Lemma von Zorn)


Ich hätte mir folgendes gedacht:

[mm] (v_{i})_{i \in I} [/mm] linear unabhängige Familie in V. [mm] (v_{i})_{i \in I} [/mm] := S. Jetzt würde ich mir eine Halbordnung auf S definieren sowie eine Totalgeordnete Menge T [mm] \subset [/mm] S. T ist linear unabhängig => S linear unabhängig. Jetzt können wir sagen das S auch in W (Kommt aus der Halbrodung) liegt, sodass gilt [mm] (v_{i})_{i \in I}=(w_{i})_{i \in J}. [/mm] Also kann man solange Vektoren ergänzen, bis man diesen Punkt erreicht hat.

Ist meine Idee richtig?

LG DerPinguinagent

PS: Ist etwas plump geschrieben, es geht ja nur ums Prinzip.

        
Bezug
Basisergänzungssatz: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Mo 26.09.2016
Autor: fred97


> V K-VR. Dann lässt sich jede linear unabhängige Familie
> in V zu einer Basis ergänzen. (Tipp benutze das Lemma von
> Zorn)
>  Ich hätte mir folgendes gedacht:
>
> [mm](v_{i})_{i \in I}[/mm] linear unabhängige Familie in V.
> [mm](v_{i})_{i \in I}[/mm] := S. Jetzt würde ich mir eine
> Halbordnung auf S definieren



Auf S ???  Wozu ??


>  sowie eine Totalgeordnete
> Menge T [mm]\subset[/mm] S. T ist linear unabhängig => S linear
> unabhängig.

Hä ? Du hast doch S als linear unabhängig gewählt !


> Jetzt können wir sagen das S auch in W (Kommt
> aus der Halbrodung) liegt,

Was ist W ????



> sodass gilt [mm](v_{i})_{i \in I}=(w_{i})_{i \in J}.[/mm]

Was ist [mm] (w_{i})_{i \in J} [/mm]  ????



> Also kann man solange Vektoren ergänzen, bis man diesen
> Punkt erreicht hat.

Welchen Punkt ?


>
> Ist meine Idee richtig?

Nein.

Wo verwendest Du das Lemma von Zorn ?


>
> LG DerPinguinagent
>  
> PS: Ist etwas plump geschrieben, es geht ja nur ums
> Prinzip.

Welches Prinzip ??  Etwa: "unpräzise Mathematik " ??



Na ja, mit Verlaub: Dein obeiger "Beweis" ist keiner.

Ich mach Dir das mal häppchenweise vor. Zwischendurch darfst Du eineiges ergänzen. Wenn Du das jeweils korrekt ergänzt, hast Du einen Beweis.

Sei also T eine linear unabhängige Familie in V. Setze

  [mm] \mathcal{M}:=\{ W: T \subseteq W \subseteq V, W \quad ist \quad linear \quad unabhaengig \} [/mm]

Auf [mm] \mathcal{M} [/mm] definieren wir eine Halbordnung " [mm] \le [/mm] "  wie folgt: für $U,W [mm] \in \mathcal{M}$ [/mm] sei

   $ U [mm] \le [/mm] W  [mm] :\gdw [/mm] U [mm] \subseteq [/mm] W$.

Warum ist das eine Halbordnung auf [mm] \mathcal{M} [/mm] ?

Nun sei [mm] \mathcal{K} [/mm]  eine Kette in [mm] \mathcal{M}. [/mm]

Gib eine obere Schranke von [mm] \mathcal{K} [/mm] in [mm] \mathcal{M} [/mm] an .


Das Zornsche Lemma liefert dann ein maximales Element $B [mm] \in \mathcal{M}$. [/mm]

Zeige: B ist eine Basis von V.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]