www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basisbestimmung von Unterraum
Basisbestimmung von Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basisbestimmung von Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 So 30.10.2011
Autor: doom0852

Aufgabe
Sei der Vektorraum S:= [mm] \IR [/mm] 3 . Dort liegt eine schiefe Ebene, beschrieben durch U:= {(x,y,z)|x,y,z [mm] \in \IR [/mm] , x+y-z=0}

- Geben Sie eine Basis von U an.
- Ergänzen Sie die Basis von U zu einer Basis von S.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo allerseits,


ich komm mit dieser Aufgabe leider garnicht zurecht. Es ist eine Basis zu dem druch die schiefe Ebene beschriebenen Unterraum zu  finden. Dieser Unterraum besitzt ja die dim=2 und somit besteht die Basis aus 2 lin. unabh. Basisvektoren. Ich dachte mir man könne zwei Richtungsvektoren der Ebene E herauspicken, die diese aufspannen und als Basisvektoren heranziehen. Jedoch ist dies nicht so einfach da als Aufpunkt der Ebene der Nullvektor gewählt ist und man dann die gleichung E: (1,1,-1) [mm] \circ [/mm] [ X - (0,0,0) ] = 0 nur durch x1,x2,x3= 0 erfült ist. Und somit kann ich ja garnicht zwei Basisvektoren finden auf diesen Weg, oder?  Würde mich über jede Hilfe freuen.
Und bei der zweiten Teilaufgabe weiß ich leider garnichts, was damit gemeint sein könnte.

        
Bezug
Basisbestimmung von Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:59 So 30.10.2011
Autor: MathePower

Hallo doom0852,


[willkommenmr]


> Sei der Vektorraum S:= [mm]\IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

3 . Dort liegt eine schiefe

> Ebene, beschrieben durch U:= {(x,y,z)|x,y,z [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

,

> x+y-z=0}
>
> - Geben Sie eine Basis von U an.
>  - Ergänzen Sie die Basis von U zu einer Basis von S.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hallo allerseits,
>  
>
> ich komm mit dieser Aufgabe leider garnicht zurecht. Es ist
> eine Basis zu dem druch die schiefe Ebene beschriebenen
> Unterraum zu  finden. Dieser Unterraum besitzt ja die dim=2
> und somit besteht die Basis aus 2 lin. unabh.
> Basisvektoren. Ich dachte mir man könne zwei
> Richtungsvektoren der Ebene E herauspicken, die diese
> aufspannen und als Basisvektoren heranziehen. Jedoch ist
> dies nicht so einfach da als Aufpunkt der Ebene der
> Nullvektor gewählt ist und man dann die gleichung E:
> (1,1,-1) [mm]\circ[/mm] [ X - (0,0,0) ] = 0 nur durch x1,x2,x3= 0
> erfült ist. Und somit kann ich ja garnicht zwei
> Basisvektoren finden auf diesen Weg, oder?  Würde mich
> über jede Hilfe freuen.
>  Und bei der zweiten Teilaufgabe weiß ich leider
> garnichts, was damit gemeint sein könnte.  


Löse die Gleichung [mm]x+y-z=0[/mm] nach einer Variablen auf.
Stelle dann die Lösungen so dar:

[mm]\pmat{x \\ y \\ z}=r*\pmat{... \\ ... \\ ...}+s*\pmat{... \\ ... \\ ...}[/mm]

Die hinter r bzw. s angegebenen Vektoren sind die Basisvektoren.


Gruss
MathePower

Bezug
                
Bezug
Basisbestimmung von Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 So 30.10.2011
Autor: doom0852

Also habe ich jetzt :

I. -y+z= a*u1 + b*v1
II. y= a*us + b*v2
III. z= a*u3 + b*v3

muss ich da nicht noch weiterrechnen, aber bei sovielen Unbekannten is dass doch nicht möglich oder langt die Schreibweise wie du sie zuvor angegeben hast?

Bezug
                        
Bezug
Basisbestimmung von Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 So 30.10.2011
Autor: MathePower

Hallo doom0852,

> Also habe ich jetzt :
>
> I. -y+z= a*u1 + b*v1
>  II. y= a*us + b*v2
>  III. z= a*u3 + b*v3
>  
> muss ich da nicht noch weiterrechnen, aber bei sovielen
> Unbekannten is dass doch nicht möglich oder langt die
> Schreibweise wie du sie zuvor angegeben hast?


Wenn Du die Gleichung [mm]x+y-z=0[/mm] erhältst Du doch:

[mm]x=-y+z[/mm]

Hierbei sind y und z frei wählbar.

Wird y=r und z=s gesetzt, so ergibt sich:

[mm]\pmat{x \\ y \\ z}=r*\pmat{... \\ 1 \\ 0}+s*\pmat{... \\ 0 \\ 1}[/mm]

Damit sind

[mm]\pmat{... \\ 1 \\ 0}, \ \pmat{... \\ 0 \\ 1}[/mm]

Basisvektoren dieses Unterraums.

So, jetzt fülle Du die "..." bei den Vektoren aus.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]