www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basis von einer Matrix
Basis von einer Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von einer Matrix: matrix
Status: (Frage) beantwortet Status 
Datum: 11:19 Di 29.01.2008
Autor: Kreide

Aufgabe
1)
[mm] \pmat{ 2 & -1 & 2 \\ -1 & 2 & 2 \\ 1 & -1 & 3 } [/mm]

Wie kann ich die Basis von dieser MAtrix (bzw von irgendeiner Matrix bestimmen?
Wenn die drei Spaltenvektoren linear unabhängig sind? Könnte man dann daraus folgern, dass die Spaltenvektoren eine Basis bilden?

bzw warum kann ich, wenn die
Basis  b={ [mm] \vektor{4 \\ 3 \\5} [/mm] , [mm] e_2 [/mm] , [mm] e_3} [/mm] die einfach als eine Matrix
[mm] \pmat{ 4 & 3 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm]
packen. Weil ich weiß dass die drei Vektoren linear unabhängig sind?

                    

        
Bezug
Basis von einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 11:44 Di 29.01.2008
Autor: angela.h.b.

Hallo,

ich kann nicht verhehlen, daß mir schon Deine Überschrift Schauder des Entsetzens über den Rücken jagt:

Matrizen haben keine Basis!!!

Die Dinger, die Basen haben und folglich auch eine Dimension, sind die Vektorräume.


Da ich nicht auf dem Mond lebe, ahne ich natürlich, was Du meinst: Du möchtest über das Bild einer Matrix sprechen, gell? (Dann tu das auch und bring Dich nicht selbst durch Formulierungswirrwarr durcheinander und in der Prüfung um Kopf und Kragen.)


> 1)
>  [mm]\pmat{ 2 & -1 & 2 \\ -1 & 2 & 2 \\ 1 & -1 & 3 }[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>
> Wie kann ich die Basis von dieser MAtrix (bzw von
> irgendeiner Matrix bestimmen?

Wie gesagt: gar nicht...

Das Bild dieser Matrix ist der Raum, der durch die Spalten der Matrix aufgespannt wird.
Seine Basis bekommst Du mit der Methode, mit der Du immer die Basis eines v. einigen Vektoren aufgespannten Raumes bestimmst.

Hierzu hat man mehrere Möglichkeiten, ich weiß nicht, welche Du verwendest.

Ein Möglichkeit: die Matrix auf Zeilenstufenform bringen. Damit kann man den Rang der Matrix= die Dimension ihres Bildes ablesen, und sogar, welche der Startvektoren seine Basis bilden. Es sind die, die in den Spalten standen, wo in der Zeilenstufenform die Pivotelemente (führende Elemente der Zeilen) sind.

Vielleicht formst Du mal eine Matrix in ZSF um, dann kann man Dir das zeigen, falls Du's noch nicht weißt.


>  Wenn die drei Spaltenvektoren linear unabhängig sind?
> Könnte man dann daraus folgern, dass die Spaltenvektoren
> eine Basis bilden?

Ja, sicher.

Aber es kommt der Tag, an dem die Spalten nicht unabhängig sind, auch dann hat das Bild eine Basis, welche man z.B. wie oben erwähnt finden kann.


>  
> bzw warum kann ich, wenn die
> Basis  b={ [mm]\vektor{4 \\ 3 \\5}[/mm] , [mm]e_2[/mm] , [mm]e_3}[/mm] die einfach als
> eine Matrix
>  [mm]\pmat{ 4 & 3 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }[/mm]
> packen. Weil ich weiß dass die drei Vektoren linear
> unabhängig sind?

Tut mir leid, ich kann nicht folgen.
Was willst Du hier weshalb wofür tun? Worum geht's? Ich kapier's nicht.


Möglicherweise geht's um ein anderes Verfahren zu Bestimmung einer Basis des v. einigen Vektoren aufgespannten Raumes. (?)
Du kannst die Vektoren auch in eine Matrix legen, auf ZSF bringen.
Wenn Du dann die verbliebenen Zeilen wieder aufrichtest, hast Du eine Basis des Bildes.
Meinstest Du das?

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]