www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Basis vom Bild
Basis vom Bild < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis vom Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:31 Di 15.07.2014
Autor: Skippy05

Hallo zusammen,

Ich habe eine Verständnisfrage: ich habe versucht die Basis vom Bild einmal mit transponierter Matrix und einmal ohne
zu berechnen, kamen zwei verschiedene Ergebnisse raus.
Wie kann ich es überprüfen ob die Basen richtig sind?


Danke!

Also ich habe diese Matrix genommen,
[mm] A=$\pmat{1&2&4&1\\2&5&6&4\\5&5&2&2}$ $\in M(3x3,\IF7$) [/mm]
in ZSF sieht die Matrix so aus:
[mm] $\pmat{1&2&4&1\\0&1&5&2\\0&0&0&0}$ [/mm]
Dann ist die Basis vom Bild [mm] $\vektor{1\\2\\5}$ [/mm] und [mm] $\vektor{2\\5\\5}$ [/mm]

Wenn ich aber die Matrix erst transponiere, in ZSF bringe und wieder transponiere,
sieht es so aus:
[mm] A=$\pmat{1&2&4&1\\2&5&6&4\\5&5&2&2}$ $\in M(3x3,\IF7$) [/mm]
[mm] $A^{T}$=$\pmat{1&2&5\\2&5&5\\4&6&2\\1&4&2}$ [/mm] in ZSF
[mm] $\pmat{1&2&5\\0&1&2\\0&0&0\\0&0&0}$ [/mm]
Die Basis vom Bild: [mm] $\vektor{1\\2\\5}$ [/mm] und [mm] $\vektor{0\\1\\2}$ [/mm]



        
Bezug
Basis vom Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Di 15.07.2014
Autor: MaslanyFanclub

Hallo,

dein Verständnisproblem ist wohl folgendes:
Du schreibt immer "die" Basis.
Das ist falsch. Es gibt nicht "die" Basis es gibt nur "eine" Basis.
Jeder Vektorraum hat mehrere Basen, hier hast du zwei verschiedene bestimmt.

Bezug
                
Bezug
Basis vom Bild: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Di 15.07.2014
Autor: Skippy05

Danke erstmal!


> dein Verständnisproblem ist wohl folgendes:
>  Du schreibt immer "die" Basis.
> Das ist falsch. Es gibt nicht "die" Basis es gibt nur
> "eine" Basis.
> Jeder Vektorraum hat mehrere Basen, hier hast du zwei
> verschiedene bestimmt.

Und wie kann ich das prüfen ob die beide richtig sind?



Bezug
                        
Bezug
Basis vom Bild: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Di 15.07.2014
Autor: MaslanyFanclub

z.B. indem du zeigst, dass die Kandidaten maximal linear unabhängig sind (lin. unabh. und Mächtigkeit des Kandidaten ist die Dimension)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]