www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Basis und Skalarprodukt
Basis und Skalarprodukt < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis und Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:03 Fr 29.08.2014
Autor: marasy

Aufgabe
a) Sei H = [mm] \IC^2 [/mm] mit Orthonormalbasis [mm] |e_1> ,|e_2>. [/mm] Ein Operator A sei in dieser Basis gegeben durch die Matrix A^(e) = [mm] \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} [/mm] AUßerdem sei |(u)> = [mm] |(e_1)>, [/mm] |(v)> = [mm] |(e_2)>. [/mm] Berechnen sie <(u^(e) |A^(e) v^(e)> und <(u^(e) A^(e) | v^(e)>.
b) Nun definieren wir eine zweite Basis [mm] |(f_1)> [/mm] = [mm] |(e_1)>, |(f_2)> [/mm] = 2 [mm] |(e_2)>, [/mm] die zwar orthogonal, aber nicht orthonormal ist, denn es gilt [mm] <(f_2|f_2)> [/mm] = 4. Wie lauten die Komponenten von <(u^(f)|, |(v^(f)> und A^(f) ? (....)

a) ist kein Problem, bloß bei b) bin ich mir gerade unsicher.
<u^(f) | = (1 0) sollte gelten, aber wieso lautet die Lösung für v=  [mm] \begin{pmatrix} 0 \\ 1/2 \end{pmatrix} [/mm] ?

Ich weiß, dass aus [mm] f_2 [/mm] = 2 [mm] e_2 [/mm] und [mm] e_2 [/mm] = v folgt, dass v= 1/2 [mm] f_2 [/mm] ist, aber ich dachte, dass dadurch , dass 2 [mm] e_2 [/mm] = [mm] \begin{pmatrix} 0 \\ 2 \end{pmatrix} [/mm] = [mm] f_2 [/mm] ist, v wieder den selben Wert annehmen müsste.

Kann mir jemand sagen, wo mein Denkfehler liegt ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basis und Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 Fr 29.08.2014
Autor: leduart

Wenn [mm] F_2 [/mm] Basisvektor ist, dann ist [mm] f_2=(0,1=^T [/mm] also [mm] v=1/2f_2=(0,1/2)^T [/mm]
Du verwechselst die Darstellung von f:2 in der Basis mit e mit der Darstellung von v in der Basis mit f.
Gruß leduart

Bezug
                
Bezug
Basis und Skalarprodukt: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:52 Mo 01.09.2014
Autor: marasy

Hallo, tut mir leid, dass ich mich so spät melde, aber ich war am Wochenende nicht da. Danke, dass du versuchst mir zu helfen :3
Also habe ich es richtig verstanden:
Ich wähle mir ein neues Koordinaten system, in dem die Länge "1" in x-Richtung der Länge "1" in "e"-Darstellung entspricht und anschließend für die y-Richtung ein System, das "1" ist, wenn man in "e"-Darstellung die Länge "2" hat ? dann würde ich verstehen, warum mein "v" im neuen system die länge 1/2 hat.
Tut mir leid, dass die Beschreibung so grottig ist^^

Bezug
                        
Bezug
Basis und Skalarprodukt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Mi 03.09.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]