www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Basis Vektorraum
Basis Vektorraum < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 So 16.11.2008
Autor: summersession2005

Aufgabe
Man finde für jeden der folgenden Vektorräume eine Basis:
1. {(x, y, z) ∈ R3 : x + y + z = 0},
2. den Raum F aller Abbildungen f : R → R für die {x ∈ R : f(x) 6= 0} endlich ist,
3. C, betrachtet als Vektorraum über dem Körper R,
4. {z ∈ C : z = 2¯z}, betrachtet als Vektorraum über dem Körper R.

Also um eine Basis zu erhalten muss ich 2 Sachen prüfen:
1. die lineare Unabhängigkeit und
2. ob sich jedes Element als Linearkombi von Elementen schreiben läßt.

Aber wie gehe ich jetzt da ran. Wie prüfe ich das jetzt. Wäre wirklich sehr dankbar wenn mir jemand helfen könnte!!



        
Bezug
Basis Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Mo 17.11.2008
Autor: Hugo_Sanchez-Vicario

Hallo su.se.2005,

du kannst natuerlich erst dann pruefen, ob etwas eine Basis ist, wenn du dieses Etwas schon gefunden bzw. geraten hast.

Die erste Teilaufgabe kannst du loesen, indem du das lineare Gleichungssystem in Zeilenstufenform bringst. Die Basis kannst du dann selbst aus den frei waehlbaren Variablen zusammenstellen. (Vorsicht: Das Gleichungs-"system" besteht hier nur aus einer einzigen linearen Gleichung in x, y und z.)

Bei der zweiten Aufgabe kann ich dir nicht helfen, weil ich leider nicht lesen kann, was gemeint ist. :-(

Die dritte Aufgabe ist ziemlich einfach, wenn du dir ueberlegst, wie man komplexe Zahlen normalerweise mit Hilfe von (einer gewissen Anzahl von) reellen Zahlen aufschreibt.

In der vierten Aufgabe ist die Bedingung an z eine lineare Bedingung an Real- und Imaginaerteil der komplexen Zahl z. Du bekommst eine lineare Gleichung und machst quasi dasselbe wie schon in Teilaufgabe 1.

Kommst du damit weiter?
Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]