www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basis, Vektorraum
Basis, Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis, Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Sa 04.02.2006
Autor: Julchen01

Aufgabe
Bestimmen Sie eine Basis des von  [mm] v_{1} [/mm] := [mm] \vektor{2 \\ 3 \\ 1 \\ 2}, v_{2} [/mm] := [mm] \vektor{1 \\ 1 \\ 2 \\ 0}, v_{3} [/mm] := [mm] \vektor{0 \\ -2 \\ 6 \\ -4} [/mm] erzeugten Unterraums des [mm] \IR [/mm] - Vektorraumes [mm] \IR^{4}. [/mm]

Liegt der Vektor [mm] \vektor{0 \\ 1 \\ 2 \\ 3} [/mm] in diesem Unterraum ?

Soweit nun erst mal diese Aufgabe.

Hab sie soweit eigentlich (meiner Meinung nach) ganz ordentlich gelöst, wäre nett, wenn sich einer die Mühe machen würde, es nachzurechnen, und mir sagen könnte, wo´s vielleicht hängt.

Also nun hier meine Lösung (bzw. der Versuch):

Ich überprüf es auf lineare Unabhängigkeit:

[mm] \lambda_{1} [/mm] * [mm] v_{1} [/mm] +  [mm] \lambda_{2} [/mm] * [mm] v_{2} [/mm] +  [mm] \lambda_{3} [/mm] * [mm] v_{3} [/mm] = 0;

führt mich dann auf ein lineares Gleichungssystem: (könnte man auch mit dem Gauß-Algorithmus lösen, aber ich finds einfacher es auszurechnen und einzusetzen. Hat hier vielleicht einer nen Tip, wie man so etwas schnell & effektiv lösen kann ? Beim Gauß weiß ich irgendwie (meist) nie, wie ich´s machen soll)

1.: 2 [mm] \lambda_{1}+ \lambda_{2} [/mm] = 0
2.: 3 [mm] \lambda_{1} [/mm] + [mm] \lambda_{2} [/mm] - 2 [mm] \lambda_{3} [/mm] = 0
3.: [mm] \lambda_{1} [/mm] + 2 [mm] \lambda_{2} [/mm] + 6 [mm] \lambda_{3} [/mm] = 0
4.: 2 [mm] \lambda_{1} [/mm]  - 4 [mm] \lambda_{3} [/mm] = 0

==> 4.: 2 [mm] \lambda_{1} [/mm] = 4 [mm] \lambda_{3} [/mm] ; [mm] \lambda_{3} [/mm] = [mm] \bruch{1}{2} \lambda_{1} [/mm] ;
1.:  [mm] \lambda_{2} [/mm] = -2 [mm] \lambda_{1} [/mm]
  
beides eingesetzt in 2. : 3 [mm] \lambda_{1} [/mm] - 2 [mm] \lambda_{1} [/mm] - [mm] \lambda_{1} [/mm] = 0; 0 = 0
==> [mm] \lambda_{1} [/mm] = [mm] \lambda_{2} [/mm] = [mm] \lambda_{3} [/mm] = 0;

==> linear unabhängig

Bilden [mm] v_{1}, v_{2} [/mm] und [mm] v_{3} [/mm] jetzt schon eine Basis ?

Wenn man prüfen will, ob der Vektor drin liegt, setzt man ihn einfach in das lineare Gleichungssystem ein:

1.: 2 [mm] \lambda_{1}+ \lambda_{2} [/mm] = 0
2.: 3 [mm] \lambda_{1} [/mm] + [mm] \lambda_{2} [/mm] - 2 [mm] \lambda_{3} [/mm] = 1
3.: [mm] \lambda_{1} [/mm] + 2 [mm] \lambda_{2} [/mm] + 6 [mm] \lambda_{3} [/mm] = 2
4.: 2 [mm] \lambda_{1} [/mm]  - 4 [mm] \lambda_{3} [/mm] = 3

==>1.: [mm] \lambda_{2} [/mm] = -2 [mm] \lambda_{1} [/mm]
    4.: [mm] \lambda_{3} [/mm] = [mm] \bruch{1}{2} \lambda_{1} [/mm] - [mm] \bruch{3}{4} [/mm]

beides eingesetzt in 2.:  3 [mm] \lambda_{1} [/mm] -2 [mm] \lambda_{1} [/mm] - [mm] \lambda_{1} [/mm] + 1,5 = 1 ; 1,5 = 1
Das stimmt bekanntermassen nicht, also kann man sagen, dass der Vektor nicht in diesem Unterraum liegt.

So, genug geschrieben für heute, wäre schön, wenn das einer nachrechnen würde, und mir sagen könnte, ob das so in etwa richtig ist. Vielen Dank schon mal jetzt für eure Mühen !

Viele Grüße !



        
Bezug
Basis, Vektorraum: ein Fehler
Status: (Antwort) fertig Status 
Datum: 20:39 Sa 04.02.2006
Autor: leduart

Hallo Julchen
> Bestimmen Sie eine Basis des von  [mm]v_{1}[/mm] := [mm]\vektor{2 \\ 3 \\ 1 \\ 2}, v_{2}[/mm]
> := [mm]\vektor{1 \\ 1 \\ 2 \\ 0}, v_{3}[/mm] := [mm]\vektor{0 \\ -2 \\ 6 \\ -4}[/mm]
> erzeugten Unterraums des [mm]\IR[/mm] - Vektorraumes [mm]\IR^{4}.[/mm]
>  
> Liegt der Vektor [mm]\vektor{0 \\ 1 \\ 2 \\ 3}[/mm] in diesem
> Unterraum ?
>  Soweit nun erst mal diese Aufgabe.
>
> Hab sie soweit eigentlich (meiner Meinung nach) ganz
> ordentlich gelöst, wäre nett, wenn sich einer die Mühe
> machen würde, es nachzurechnen, und mir sagen könnte, wo´s
> vielleicht hängt.
>  
> Also nun hier meine Lösung (bzw. der Versuch):
>
> Ich überprüf es auf lineare Unabhängigkeit:
>
> [mm]\lambda_{1}[/mm] * [mm]v_{1}[/mm] +  [mm]\lambda_{2}[/mm] * [mm]v_{2}[/mm] +  [mm]\lambda_{3}[/mm] *
> [mm]v_{3}[/mm] = 0;
>  
> führt mich dann auf ein lineares Gleichungssystem: (könnte
> man auch mit dem Gauß-Algorithmus lösen, aber ich finds
> einfacher es auszurechnen und einzusetzen. Hat hier
> vielleicht einer nen Tip, wie man so etwas schnell &
> effektiv lösen kann ? Beim Gauß weiß ich irgendwie (meist)
> nie, wie ich´s machen soll)

der Gauss alg. wär hier viel schneller gewesen, da du schon weisst, dass du dann noch die inhom. lösen willst, führ die gleich mit.
Wenn du den Gauss alg. nur zum Gleichungslösen willst, schreib einfach das zahlenschema hin, wenns geht 1.Zeile vorn ne 1 das hilft meistens.
Hier v2 vorn:
1  2  0 |     1  2  0 |      1  2  0 |  
1  3 -2 |     0  1 -2 |      0  1 -2 |  
2  1  6 |     0 -3  6 |      0  0  0 |
2  0  4 |     0  2  4 |      0  0  0  |

von links nach rechts bearbeitet.

so siehst du direkt, dass es nur 2 unabhängige gibt.
Prinzip: vielfaches der ersten Zeile zu allen anderen  addieren, so dass in der ersten Spalte Nullen.
Dann Vielfaches der 2. Zeile zu allen andern, so dass unterhalb der 2. Zeile nur noch Nullen in der 2. Spalte. usw.
Wenn du immer so vorgehst, kannst du auch Determinanten ausrechnen ohne Fehler zu machen. Und du siehst den Rang der Matrix direkt.

> 1.: 2 [mm]\lambda_{1}+ \lambda_{2}[/mm] = 0
>  2.: 3 [mm]\lambda_{1}[/mm] + [mm]\lambda_{2}[/mm] - 2 [mm]\lambda_{3}[/mm] = 0
>  3.: [mm]\lambda_{1}[/mm] + 2 [mm]\lambda_{2}[/mm] + 6 [mm]\lambda_{3}[/mm] = 0
>  4.: 2 [mm]\lambda_{1}[/mm]  - 4 [mm]\lambda_{3}[/mm] = 0
>  
> ==> 4.: 2 [mm]\lambda_{1}[/mm] = 4 [mm]\lambda_{3}[/mm] ; [mm]\lambda_{3}[/mm] =
> [mm]\bruch{1}{2} \lambda_{1}[/mm] ;
>  1.:  [mm]\lambda_{2}[/mm] = -2 [mm]\lambda_{1}[/mm]
>    
> beides eingesetzt in 2. : 3 [mm]\lambda_{1}[/mm] - 2 [mm]\lambda_{1}[/mm] -
> [mm]\lambda_{1}[/mm] = 0; 0 = 0

bis hier ist es richtig! aber da die  Gleichung auf jeden Fall erfüllt ist, kannst du ja [mm] \lambda [/mm] 1  beliebig wählen; es MUSS also nicht 0 sein. und dass alle [mm] \lambda=0 [/mm] eine Lösung ist weisst du ja schon am Anfang.

> ==> [mm]\lambda_{1}[/mm] = [mm]\lambda_{2}[/mm] = [mm]\lambda_{3}[/mm] = 0;
>  
> ==> linear unabhängig

nein.
also musst du 2 davon aussuchen, die lin. unabh. sind. da keiner von den dreien prop. zu einemanderen ist kannst du sie beliebig aussuchen.

> Bilden [mm]v_{1}, v_{2}[/mm] und [mm]v_{3}[/mm] jetzt schon eine Basis ?
>  
> Wenn man prüfen will, ob der Vektor drin liegt, setzt man
> ihn einfach in das lineare Gleichungssystem ein:
>  
> 1.: 2 [mm]\lambda_{1}+ \lambda_{2}[/mm] = 0
>  2.: 3 [mm]\lambda_{1}[/mm] + [mm]\lambda_{2}[/mm] - 2 [mm]\lambda_{3}[/mm] = 1
>  3.: [mm]\lambda_{1}[/mm] + 2 [mm]\lambda_{2}[/mm] + 6 [mm]\lambda_{3}[/mm] = 2
>  4.: 2 [mm]\lambda_{1}[/mm]  - 4 [mm]\lambda_{3}[/mm] = 3
>  
> ==>1.: [mm]\lambda_{2}[/mm] = -2 [mm]\lambda_{1}[/mm]
>      4.: [mm]\lambda_{3}[/mm] = [mm]\bruch{1}{2} \lambda_{1}[/mm] -
> [mm]\bruch{3}{4}[/mm]
>  
> beides eingesetzt in 2.:  3 [mm]\lambda_{1}[/mm] -2 [mm]\lambda_{1}[/mm] -
> [mm]\lambda_{1}[/mm] + 1,5 = 1 ; 1,5 = 1
> Das stimmt bekanntermassen nicht, also kann man sagen, dass
> der Vektor nicht in diesem Unterraum liegt.

Das bleibt richtig, obwohl ja jetz überflüsig kompliziert.
Gruss leduart

Bezug
                
Bezug
Basis, Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Fr 30.11.2007
Autor: Schneckal36

Hallo ich muss diese aufgabe lösen und schwimme bei dem zweiten teil der aufgabe:

Zuerst sollte man bestimmen, ob die drei Vektoren [mm] \vektor{3 \\ 1 \\ 0} [/mm] , [mm] \vektor{1 \\ 0 \\ -1} [/mm] , [mm] \vektor{1 \\ 1 \\ 2} [/mm] c R³ linear unabhängig sind... das hab ich auch gekonnt und es kam heraus das sie linear abhängig sind. Ich muss jetzt aber noch bestimmen ob die Vektoren eine Basis des angegebenen Vektorraumes bilden.

ich weiß aber nicht wirklich was ich da machen soll. Ich dachte eigentlich auch, das man die Basis nur bestimmen kann wenn die Vektoren unabhängig sind...
Vielleicht kann mir ja einer helfen!!! Wäre echt super!

Bezug
                        
Bezug
Basis, Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Fr 30.11.2007
Autor: angie.b

hallo,

dass die 3 vektoren linear abhängig sind stimmt, da eine basis jedoch definiert ist als ein linear unabhängiges erzeugendensystem, können diese 3 vektoren keine basis sein.
im prinzip bräuchtest du also nix weiter zeigen, da du ja schon gezeigt hast dass sie linear abhängig sind, und somit ist ja mit der definition klar, dass sie keine basis bilden..

mfg ;)



Bezug
                                
Bezug
Basis, Vektorraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:32 Fr 30.11.2007
Autor: Schneckal36

ahhh super! Vielen dank! Das is ja super! :D

dann hab ich gleich noch eine weitere Frage zu meiner nächsten Aufgabe. Zu zeigen ist genau das gleiche wie oben nur mit den Vektoren [mm] \vektor{5 \\ 3} [/mm] und [mm] \vektor{2 \\ 1} [/mm] die beiden sind ja linear unabhängig.
wie kann ich jetzt bei diesen beiden die Basis bestimmen? :D gibts da ein bestimmtes verfahren oder so?
mfg

Bezug
                                        
Bezug
Basis, Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Fr 30.11.2007
Autor: sirdante

Hallo!

Die Basis eines reellen Vektorraums mit Dimension n, muss den Vektorraum aufspannen (Also Erzeugendensystem sein) aber darf keine "überflüssigen" Vektoren mehr haben (linear abhängige Vektoren).

Du kannst eine Basis deshalb aus n unabhängigen Vektoren bilden.

Falls du aus ihnen also eine Basis des [mm] \IR^2 [/mm] basteln sollst, dann:

[mm] \vektor{5 \\ 3} [/mm] und [mm] \vektor{2 \\ 1} [/mm] sind wie du erwähnt hast linear unabhängig, außerdem sind sie Erzeugendensystem.

=>  [mm] \vektor{5 \\ 3} [/mm] und [mm] \vektor{2 \\ 1} [/mm] bilden schon eine Basis des [mm] \IR^2 [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]