www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis,Schnitt Unterräume, Span
Basis,Schnitt Unterräume, Span < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis,Schnitt Unterräume, Span: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:48 So 09.11.2014
Autor: hevaloop

Aufgabe
(a) Gegeben seien die folgenden Unterräume des [mm] R^3: [/mm]
[mm] U_1 [/mm] := Spann { [mm] \pmat{ 1 & 2 & 3 }, \pmat{ 1 & 1 &1} [/mm] }, [mm] U_2 [/mm] := Spann { [mm] \pmat{ 1 & 5 & 6 }, \pmat{ 1 & 0 &1} [/mm] }
Bestimmen Sie eine Basis von [mm] U_1 \cap U_2. [/mm]

(b)Bestimmen Sie, welche Dimension der Durchschnitt eines dreidimensionalen und eines vierdimensionalen Untervektorraums in einem sechsdimensionalen Vektorraum haben kann.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

zu a)
[mm] U_1 [/mm] und [mm] U_2 [/mm] spannen jeweils eine Ebene im [mm] R^3 [/mm] auf.
Also [mm] E_1: [/mm] Lamda (1,2,3) + Mü (1,1,1)
[mm] E_2: [/mm] alpha (1,5,6) + beta (1,0,1)
Nun muss man diese beiden Ebenen doch irgendwie gleichsetzen, um einen Schnittpunkt zu erhalten, oder? Allerdings bräuchte ich dafür doch zuerst einen Stützvektor, den ich aber nicht habe... wie gehe ich da nun direkt vor?
Die Basis meines Schnittes von [mm] U_1 [/mm] und [mm] U_2 [/mm] ist dann der Richtungvektor der Schnittgeraden? Allerdings weiß ich nicht, wie ich diese Schnittgerade erhalten kann. Bitte um Hilfe.

Aufgabe b) ist erstmal irrelevant....


Danke schon mal!

        
Bezug
Basis,Schnitt Unterräume, Span: Antwort
Status: (Antwort) fertig Status 
Datum: 19:04 So 09.11.2014
Autor: MathePower

Hallo hevaloop,


[willkommenmr]


> (a) Gegeben seien die folgenden Unterräume des [mm]R^3:[/mm]
>  [mm]U_1[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= Spann { [mm]\pmat{ 1 & 2 & 3 }, \pmat{ 1 & 1 &1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

},

> [mm]U_2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:= Spann { [mm]\pmat{ 1 & 5 & 6 }, \pmat{ 1 & 0 &1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

>  Bestimmen Sie eine Basis von [mm]U_1 \cap U_2.[/mm]
>  
> (b)Bestimmen Sie, welche Dimension der Durchschnitt eines
> dreidimensionalen und eines vierdimensionalen
> Untervektorraums in einem sechsdimensionalen Vektorraum
> haben kann.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> zu a)
>  [mm]U_1[/mm] und [mm]U_2[/mm] spannen jeweils eine Ebene im [mm]R^3[/mm] auf.
> Also [mm]E_1:[/mm] Lamda (1,2,3) + Mü (1,1,1)
>  [mm]E_2:[/mm] alpha (1,5,6) + beta (1,0,1)
>  Nun muss man diese beiden Ebenen doch irgendwie
> gleichsetzen, um einen Schnittpunkt zu erhalten, oder?
> Allerdings bräuchte ich dafür doch zuerst einen
> Stützvektor, den ich aber nicht habe... wie gehe ich da
> nun direkt vor?


Einen Stützvektor benötigst Du nicht.

Es ist die Lösungsmenge von

[mm]E_{1}=E_{2}[/mm]

zu bestimmen.


>  Die Basis meines Schnittes von [mm]U_1[/mm] und [mm]U_2[/mm] ist dann der
> Richtungvektor der Schnittgeraden? Allerdings weiß ich
> nicht, wie ich diese Schnittgerade erhalten kann. Bitte um
> Hilfe.
>  
> Aufgabe b) ist erstmal irrelevant....
>  
>
> Danke schon mal!


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]