www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basis Dimension
Basis Dimension < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 14.11.2007
Autor: Pompeius

Aufgabe
Gegeben seien in [mm] R^3 [/mm] die Vektoren v1, ...,v5. Sei V = span(v1,...,v5).
Geben sie die Dimension, sowie alle Basen von V an.

Hi @ all ..

ja ich hätte nur mal ne frage zur vorgehensweise..
also "span" bedeutet auch Erzeugendensystem ?!
wenn ja dann muss ich die menge v1,...,v5 ja auf drei linear unabhängige vektoren reduzieren( wegen [mm] R^3) [/mm] um die basis zu ermitteln und die anzahl der vekoren in der basis wär ja gleich der dimension..... darf ich das überhaupt annehmen ?? (wegen [mm] R^3)?? [/mm]

meine frage wär, ob ich jetzt von allen 5 vektoren jeweil immer drei auf lineare unabhängigkeit prüfen muss ? wenn das jetzt 1000 vektoren wären würd das ja aber nicht gehen ..

oder benutzt man irgendwie einen austauschsatz ?

        
Bezug
Basis Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Do 15.11.2007
Autor: angela.h.b.


> Gegeben seien in [mm]R^3[/mm] die Vektoren v1, ...,v5. Sei V =
> span(v1,...,v5).
>  Geben sie die Dimension, sowie alle Basen von V an.

>  
> ja ich hätte nur mal ne frage zur vorgehensweise..
> also "span" bedeutet auch Erzeugendensystem ?!

Hallo,

nein.
Sonst wäre die Frage ja auch sinnlos, oder was sollte die Dimension eines Erzeugendensystems sein???

Aber natürlich steckt ein Körnchen Wahrheit in dem , was Du schreibst.
Es ist [mm] span(v_1,...,v_5) [/mm] die Menge sämtlicher Linearkombinationen v. [mm] v_1,...,v_5, [/mm] man sagt dazu auch "Lineare Hülle" oder "der von [mm] (v_1,...,v_5) [/mm]  erzeugte Raum". es ist [mm] (v_1,...,v_5) [/mm]  ein Erzeugendensystem v. [mm] span(v_1,...,v_5) [/mm]

> wenn ja dann muss ich die menge v1,...,v5 ja auf drei
> linear unabhängige vektoren reduzieren( wegen [mm]R^3)[/mm] um die
> basis zu ermitteln und die anzahl der vekoren in der basis
> wär ja gleich der dimension..... darf ich das überhaupt
> annehmen ?? (wegen [mm]R^3)??[/mm]

Du mußt nun herausfinden, wie groß eine maximale linear unabhängige Teilmenge Deiner 5 Vektoren ist, das ist dann die Dimension des Spans.

Da der Grundraum der [mm] \IR^3 [/mm] ist, hast Du recht, daß die Dimension des aufgespannten Raumes höchstens =3 sein kann. Aber natürlich auch kleiner.

  

> meine frage wär, ob ich jetzt von allen 5 vektoren jeweil
> immer drei auf lineare unabhängigkeit prüfen muss ? wenn
> das jetzt 1000 vektoren wären würd das ja aber nicht gehen

Die Dimension des gesuchten Raumes liefert Dir der Rang der Matrix, die aus den Vektoren besteht.

Ich weiß nicht, welche Methoden zur Bestimmung einer Basis Ihr hattet.
Du kannst z.B. die Spalten  quer (also als Zeilen) in eine Matrix legen, auf Zeilenstufenform bringen. Die Nichtnullzeilen liefern Dir eine Basis des gesuchten Raumes. (Du mußt die Vektoren dann natürlich wieder "hinstellen" bzw. mit einem ^t vershen.)

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]