www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basen von Vektorräumen
Basen von Vektorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen von Vektorräumen: Bestimmung von Basen
Status: (Frage) beantwortet Status 
Datum: 13:34 Do 24.11.2011
Autor: helono

Aufgabe
Geben sie eine Basis für folgenden Vektorraum an:
(x1,x2,x3) aus R³:x1=x3

Grundsätzlich muss ich doch nun 3 linear unabhängige Vektoren finden.
Hier ist bei mir schon ein kleines Verständnisproblem:
(2,1,2),(4,3,4),(1,1,1)
In Matrix ausgerechnet:
   2 4 1 0
=> 0 2,5 0 0
   0 0 0 0

Sind die jetzt linear unabhängig? Da bin ich mir irgendwie unsicher.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Wenn ich nun 3 linear unabhängie Vektoren gefunden habe, dann müssen diese auch noch ein Erzeugendensystem sein. Also V=Lin(vi)iausI.
Das versteh ich auch nciht.

        
Bezug
Basen von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Do 24.11.2011
Autor: fred97


> Geben sie eine Basis für folgenden Vektorraum an:
>  (x1,x2,x3) aus R³:x1=x3
>  Grundsätzlich muss ich doch nun 3 linear unabhängige
> Vektoren finden.

Nein.


>  Hier ist bei mir schon ein kleines Verständnisproblem:
>  (2,1,2),(4,3,4),(1,1,1)
>  In Matrix ausgerechnet:
>     2 4 1 0
>  => 0 2,5 0 0

>     0 0 0 0

ich hab keine Ahnung, was Du da gemacht hast ?

>  
> Sind die jetzt linear unabhängig? Da bin ich mir irgendwie
> unsicher.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Wenn ich nun 3 linear unabhängie Vektoren gefunden habe,
> dann müssen diese auch noch ein Erzeugendensystem sein.
> Also V=Lin(vi)iausI.
>  Das versteh ich auch nciht.


Wir haben

          [mm] $U=\{(x_1,x_2,x_3)^T: x_1=x_3\}$ [/mm]

Davon sollst Du eine Basis bestimmen. Ist Dir klar, dass U eine Ebene im Raum ist ?

Jeder Vektor in U hat doch die Form

[mm] \vektor{t \\ s \\ t}= t\vektor{1 \\ 0 \\ 1}+s\vektor{0 \\ 1 \\ 0} [/mm]

Kannst Du jetzt eine Basis von U bestimmen ?

FRED


Bezug
                
Bezug
Basen von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Do 24.11.2011
Autor: helono

Vermutlich dann zwei Vektoren mit:
x1= 2,x2=1 und x3=2
und x4=0 x5=1 und x6=0 bespielsweise

Bezug
                        
Bezug
Basen von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Do 24.11.2011
Autor: angela.h.b.


> Vermutlich dann zwei Vektoren mit:
>  x1= 2,x2=1 und x3=2
>  und x4=0 x5=1 und x6=0 bespielsweise

Hallo,

[willkommenmr].

Falls Du damit ausdrücken möchtest, daß die beiden Vektoren [mm] \vektor{1\\2\\1} [/mm] und [mm] \vektor{0\\1\\0} [/mm] zusammen eine Basis  des fraglichen Vektorraumes bilden, so stimmt dies - wenn mir auch nicht ganz klar ist, wie Du sie gefunden hast.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]