www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen von V und V/U
Basen von V und V/U < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen von V und V/U: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Mi 18.01.2006
Autor: YOU

Aufgabe
a)Es sei V ein K-Vektorraum, dimV kleiner unendlich. und U ist ein Unterraum. Sei B eine Basis von V. Zeige: Es gibt eine Teilmenge B' von B, so dass {v+U | v ist Element von B'} eine Basis von V/U.

b)Sei [mm] V=R^n [/mm] und B={(1,0,...,0),(0,1,...,0),.....,(0,...,0,1)} die Standardbasis. Man finde für folgende U ein B', dass die in a) beschriebene Eigenschaft hat:
(i) U=<(1,1,1,....,1)>
(ii) U=<(1,1,0,.....0),(0,1,1,0,....,0)>
(iii)[mm] U={( a_{1}, a_{2},..., a_{n}) | a_{i} \in \IR, \summe_{i=1}^{n} a_{i} =0}. [/mm]



Hallo.

Ich habe ein Problem. Ich komme mit der oben genannten Aufgabe nicht klar. Als Tipp wurde uns gesagt, dass man den Austauschsatz von Steinitz verwenden sollte. Könnt ihr mir vielleicht helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Basen von V und V/U: Antwort
Status: (Antwort) fertig Status 
Datum: 06:56 Do 19.01.2006
Autor: mathiash

Hallo und guten Morgen,

tausche doch via Steinitz einen Teil der Basisvektoren aus gegen eine Basis von U,
dann kannst Du Dir leicht ueberlegen, dass die restlichen verbleibenden Vektoren der
urspruenglichen Basis bezueglich der Aequivalenzrelation

[mm] v\sim [/mm] w  [mm] \:\Leftrightarrow v-w\in [/mm] U

paarweise nicht-aequivalent sind. Die Klassen v+U all dieser verbleibenden Vektoren
der urspr. Basis bilden dann eine Basis von [mm] V\slash [/mm] U.

In (i) ist zB [mm] \{ <1,\ldots , 1>\} [/mm] eine einelementige Basis, und diese kannst Du gegen
eine bel. vektor der Standardbasis austauschen, so dass also je n-1 Vektoren der
Standardbasis einer Basis von [mm] V\slash [/mm] U entsprechen.

Prinzip klar ?

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]