Basen gesucht < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:00 Di 30.12.2008 | Autor: | Hanz |
Aufgabe | Seien V und W endlich dimensionale K-Vektorräume der Dimension [mm] n=dim_K [/mm] V bzw. [mm] m=dim_K [/mm] W. Sei f:V [mm] \to [/mm] W eine K-lineare Abbildung. Wir setzen [mm] r:=dim_K [/mm] Im(f). Schließlich sei A [mm] \in [/mm] Mat(m,n;K) eine beliebige Matrix mit Rang(A)=r.
Zeigen Sie: Es gibt Basen B von V und C von W mit [mm] M^{B}_C(f)=A. [/mm] |
Hallo,
ich weiß nicht wirklich wie ich hier vorgehen soll, bisher habe ich nicht viel...
ich weiß:
Rang(A) = dim Im(f)
dim Ker(f) + dim Im(f) = dim V
[mm] \gdw [/mm] dim Ker(f) = dim V - dim Im(f)
[mm] \gdw [/mm] dim Ker(f) = n - Rang(A)
Aber wie genau ich die Basen bestimmen kann ohne konkret was zu haben weiß ich leider nicht.
Danke schonmal,
Hanz
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:17 Mi 31.12.2008 | Autor: | Hanz |
Niemand eine Idee? =(
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:51 Mi 31.12.2008 | Autor: | rainman_do |
Hallo, ich denke nicht dass das als Antwort ausreichen wird, deswegen schreib ichs mal als Mitteilung...
Also nehmen wir mal an, wir hätten zwei Darstellungsmatrizen von der gleichen linearen Abbildung, allerdings bzgl. verschiedener Basen in V und W. Dann sehen die Darstellungsmatrizen u.U. sehr verschieden aus, haben aber doch einiges gemeinsam. Z.B. Der Rang der beiden Matrizen ist gleich, also ist natürlich die Dimension des Bildes und des Kerns beides mal gleich. Das gilt für alle beliebigen Basen von V und W. Jetzt ist deine Aufgabe genau der Umkehrschluss, nämlich: Es ist eine Matrix gegeben, deren Rang so groß ist wie das Bild von f, die Behauptung ist: Bzgl. irgendwelcher Basen ist diese Matrix die Darstellungsmatrix von f. Naja, jetzt ist es eigentlich nicht schwer darauf zu kommen, dass das gilt, aber ich finde keinen so schönen weg es aufzuschreiben...
Nehmen wir mal an, es wäre [mm] M\in [/mm] Mat(m,n;K) die Darstellungsmatrix von f bzgl. der Standardbasen in V und W, dann gilt rang(M)=dim(Bild(f))=rang(A), da M und A also den gleichen Rang haben, gibt es Transformationsmatrizen [mm] L\in [/mm] Mat(n,n;K) und [mm] S\in [/mm] Mat(m,m;K), sodass SML=A gilt, und die neuen Basen bzgl. derer A die Darstellungsmatrix von f ist stehen in L und S.....jetzt muss das nur noch vernünftig formuliert und begründet werden, insbesondere weiß ich nicht, ob der Schritt "A und M haben den gleichen Rang, also gibt es Trafo-matrizen..." ohne weiteres klar ist.....vielleicht ist es ja als denkanstoß nützlich....
guten rutsch
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:22 Do 01.01.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|