www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen bestimmen
Basen bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen bestimmen: Frage
Status: (Frage) beantwortet Status 
Datum: 15:17 Mi 06.07.2005
Autor: michael7

Hallo zusammen,

folgende Aufgabe:

Gegeben sei

[mm]A=\pmat{-2&3&2&3\\-3&5&0&1\\1&2&-2&-2}[/mm].

Bestimmen Sie Basen A von [mm] $\IR^4$ [/mm] und B von [mm] $\IR^3$ [/mm] mit

[mm]M^A_B(\phi_A)=\pmat{1&0&0&0\\0&1&0&0\\0&0&0&0}[/mm].

Mir ist klar, wie ich [mm] $M^A_B(\phi_A)$ [/mm] bestimme, falls die Basen A und B gegeben sind. Aber wie gehe ich in dieser Aufgabe den umgekehrten Weg am geschicktesten an?

Viele Gruesse

Michael

        
Bezug
Basen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mi 06.07.2005
Autor: DaMenge

Hallo,

das kommt jetzt ganz darauf an, was ihr schon hattet.

eine Möglichkeit wäre es : eine Basis des Kernes zu bestimmen und dann mit zwei (linear unabhängigen) Eigenvektoren des Eigenwertes 1 zu ergänzen. (Also noch eine Basis des Eigenraumes finden)

eine andere, aber kompliziertere Möglichkeit würde über das umgekehrte Denken beim Gauß gehen, also müsstest du die beiden Matrizen bestimmen, die A die andere Matrix machen und diese dann mit Hilfe des Transformationssatzes als Basistrafo interpretieren - dann ergeben sich deine neuen Basisvektoren durch einsetzen in den Basistrafo.

ich lasse hier aber mal auf "teilweise beantwortet" falls ich eine wesentliche Möglichkeit übersehe..

viele Grüße
DaMenge

Bezug
                
Bezug
Basen bestimmen: Rueckfrage
Status: (Frage) beantwortet Status 
Datum: 17:09 Mi 06.07.2005
Autor: michael7

Hallo,

danke fuer die schnelle Antwort!

> das kommt jetzt ganz darauf an, was ihr schon hattet.
>  
> eine Möglichkeit wäre es : eine Basis des Kernes zu
> bestimmen und dann mit zwei (linear unabhängigen)
> Eigenvektoren des Eigenwertes 1 zu ergänzen. (Also noch
> eine Basis des Eigenraumes finden)

Denke eher nicht, dass ich das verwenden darf.

> eine andere, aber kompliziertere Möglichkeit würde über das
> umgekehrte Denken beim Gauß gehen, also müsstest du die
> beiden Matrizen bestimmen, die A die andere Matrix machen
> und diese dann mit Hilfe des Transformationssatzes als
> Basistrafo interpretieren - dann ergeben sich deine neuen
> Basisvektoren durch einsetzen in den Basistrafo.

Also unser Tutor hat in der Uebungsgruppe folgendes gemacht:

[mm]\pmat{1&0&0&-2&3&2&3\\0&1&0&-3&5&0&1\\0&0&1&1&2&-2&-2}[/mm]

Mit Gauss auf Zeilenstufenform bringen:

[mm]\pmat{0&0&1&-1&2&-2&-2\\0&1&-3&0&-1&6&7\\1&-1&1&0&0&0&0}[/mm]

In den ersten drei Spalten kann man nun anscheinend spaltenweise die Vektoren ablesen, die die Basis A bilden:

[mm]A = \left\{\vektor{0\\0\\1}, \vektor{0\\1\\-1}, \vektor{1\\-3\\1}\right\}[/mm]

Dann muesste ich doch jetzt diese Vektoren an [mm] $M^A_B(\phi_A)$ [/mm] dranmultiplizieren koennen, um Vektoren bezueglich der Basis B zu erhalten. Aber dann muessten die Vektoren von A doch vier Komponenten enthalten, da ich sonst die Matrixmultiplikation gar nicht durchfuehren kann. Irgendwie stimmen da wohl meine Aufzeichnungen nicht.

Koennt ihr mir vielleicht noch etwas genauer erklaeren, was ich da denn genau machen muss?

Danke, Michael

Bezug
                        
Bezug
Basen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Mi 06.07.2005
Autor: DaMenge

Joah,

da ist ein bischen was falsch dran.

Ich empfehle mal einen Blick in den Fischer oder ähnliche Literatur - oder zur Not einfach mal den Tutor löchern, warum denn alles genau so klappt, wie er sagt...

Ich liefer dir jetzt mal nur ein Rechenverfahren :
Du kennst den Transformationssatz?
Gut, dann weißt du ja, dass es TrafoMatrizen S und T gibt, so dass:
$ [mm] S*A*T^{-1}=\pmat{1&0&0&0\\0&1&0&0\\0&0&0&0} [/mm] $ , also T eine 4x4 und S eine 3x3 Matrix.

Und diese musst du nun finden, denn die Basisvektoren sind die Spaltenvektoren von $ [mm] S^{-1} [/mm] $ (für B) und $ [mm] T^{-1} [/mm] $ (für A)


Nun zum Rechenverfahren : es läuft in zwei Schritten:
Zuerst, wie du schon gemacht hast : S ausrechnen, dazu durch Zeilenumformungen:
$ [mm] \pmat{1&0&0&-2&3&2&3\\0&1&0&-3&5&0&1\\0&0&1&1&2&-2&-2} [/mm] $ zu $ [mm] \pmat{1&0&0&-2&3&2&3\\-1,5&1&0&0&0,5&-3&-3,5\\0,5&-7&1&0&0&20&24} [/mm] $

nun steht links dein 3x3 S und rechts ein A'

nun durch Spaltenumformungen A' auf die gewünschte Endform bringen, dazu :
$ [mm] \pmat{-2&3&2&3\\0&0,5&-3&-3,5\\0&0&20&24}\pmat{1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1} [/mm] $ mit Spaltenumformungen auf die Endform bringen.
(ja, eine 4x4 Einheitsmatrix)

Dann steht rechts die Matrix $ [mm] T^{-1} [/mm] $

und wie gesagt um die Basen zubekommen die Spaltenvektoren der Inversen Inversen betrachten.

> Dann muesste ich doch jetzt diese Vektoren an [mm]M^A_B(\phi_A)[/mm]
> dranmultiplizieren koennen, um Vektoren bezueglich der
> Basis B zu erhalten.

Nee nee , das bedeutet, dass du einen Vektor bzgl der Basisdarstellung von A reinsteckst, das heißt wenn du die Basis reinstecken willst, musst du die Einheitsvektoren reinstecken - dann bekommst du ja die Einheitsvektoren von B raus, also genau die Basiselemente (in Basisdarstellung B)

viele Grüße
DaMenge

Bezug
                                
Bezug
Basen bestimmen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Mi 06.07.2005
Autor: michael7

Hallo,

vielen Dank fuer Deinen ausfuehrlichen Artikel! Hab's verstanden. Jetzt wo Du das alles schreibst, kommt mir auch die relevante Passage unseres Skripts wieder in den Sinn. ;-)

Viele Gruesse

Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]