www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen
Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:54 So 29.05.2005
Autor: Adele

Guten Morgen!
Ich sitze gerade an meinem Lineare Algebra II Übungsblatt und weiß bei einer Aufgabe absulot nicht, wie ich anfangen/vorgehen muss. Wäre super, wenn mir jemand dabei etwas helfen könnte.

Ich habe diese Frage in keinem anderen Forum gestellt.

Die Aufgabe lautet:
Sei V =  [mm] \IR² [/mm] und  [mm] \emptyset [/mm] : V [mm] \to [/mm] V die lineare Abbildung  [mm] \emptyset(x,y) [/mm] = (2x+y,2y).

1. Finde Basen B und C, so daß [mm] M_{B,C}( \emptyset) [/mm] =  [mm] \pmat{ 1 & 0 \\ 0 & 1 }. [/mm]
2. Zeige, daß es keine Basis B von V gibt mit [mm] M_{B,B}( \emptyset) [/mm] =  [mm] \pmat{ 1 & 0 \\ 0 & 1 }. [/mm]

Ich wäre wirkich sehr dankbar für ein paar Hilfestellungen.

Liebe Grüße,
Adele


        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:22 So 29.05.2005
Autor: banachella

Hallo!

Zu 1)
Also angenommen, du hast zwei Basen $B$ und $C$ in Matrix-Form vorliegen. Also z.B. [mm] $B=(b_1|b_2)$ [/mm] mit [mm] $\{b_1,b_2\}$ [/mm] Basis von [mm] $\IR^2$. [/mm]
Dann soll [mm] $B^{-1}\theta C=\pmat{1&0\\0&1}$? [/mm]
Du kannst [mm] $\theta$ [/mm] umschreiben in die Form [mm] $\theta=\pmat{2&1\\0&2}$. [/mm]
Jetzt wähle z.B. für $C$ die kanonische Basis - also [mm] $C=\pmat{1&0\\0&1}$. [/mm] Und für $B$ wähle die Basis [mm] $\left\{\vektor{2\\0};\vektor{1\\2}\right\}$. [/mm] Weil diese beiden Vektoren linear unabhängig sind, ist das eine Basis. Und weil so [mm] $B=\theta$, [/mm] ist [mm] $B^{-1}\theta C=\theta^{-1}\theta=\pmat{1&0\\0&1}$. [/mm]

Zu 2)
Führe hier einen Beweis durch Widerspruch! Angenommen, es gäbe eine Basis, so dass [mm] $B^{-1}\theta B=\pmat{1&0\\0&1}$. [/mm] Dann wäre [mm] $\theta=B\pmat{1&0\\0&1}B^{-1}$... [/mm]

Gruß, banachella


Bezug
                
Bezug
Basen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:24 So 29.05.2005
Autor: Adele

Danke für die schnelle Antwort, ich werde gleich mal gucken wie weit ich damit komme :)
Wenn ich noch fragen dazu hab, dann meld ich mich noch mal, oki?

Liebe Grüße,
Adele

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]