www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Basen
Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:54 Di 13.12.2005
Autor: charly1607

Aufgabe
Sei V ein endlich erzeugter Vektorraum und f: V ---> W eine lineare Abbildung. Es sei b1,...,bk eine Basis von ker(f), und f(v1),...,f(vr) eine Basis von im(f). Zeige Sie, dass dann b1,...,bk,v1,...,vr eine Basis eine Basis von V ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

wie kann ich hier die basis bestimmen? muss ich dann noch irgendetwas zeigen?

        
Bezug
Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Di 13.12.2005
Autor: angela.h.b.


> Sei V ein endlich erzeugter Vektorraum und f: V ---> W eine
> lineare Abbildung. Es sei b1,...,bk eine Basis von ker(f),
> und f(v1),...,f(vr) eine Basis von im(f). Zeige Sie, dass
> dann b1,...,bk,v1,...,vr eine Basis eine Basis von V ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> wie kann ich hier die basis bestimmen?

Hallo,

bestimmen mußt Du Deine Basis ja gar nicht mehr, Du hast ja schon eine Familie von Vektoren vorgegeben, von der Du zeigen sollst, daß es eine Basis ist.

>muss ich dann noch

> irgendetwas zeigen?

Ja, denn nur die Familie von Vektoren abzuschreiben, wäre wohl etwas dürftig...

Wenn Du zeigst, daß dimV=k+r ist, und Du außerdem die lineare Unabhängigkeit der Vektoren b1,...,bk,v1,...,vr zeigen kannst, hast Du gezeigt, daß diese eine Basis von V bilden.

Noch ein Tip:
Für x,y [mm] \in [/mm] V folgt aus [mm] 0=\lambda [/mm] x+ [mm] \mu [/mm] y, daß [mm] f(0)=f(\lambda [/mm] x+ [mm] \mu [/mm] y) ist.
Das wirst Du gebrauchen können.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]