www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Banachscher Fixpunktsatz
Banachscher Fixpunktsatz < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Banachscher Fixpunktsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:07 So 12.06.2016
Autor: Mathe-Lily

Aufgabe
Gegenbeispiel zu Banachschem Fixpunktsatz:

Sei [mm] M:= (0, \infty) \subset \IR, f: M \to M [/mm] definiert mit [mm] f(x):= \bruch{1}{2}x. [/mm]
Dann gilt [mm] |f(x)-f(y)| = |\bruch{1}{2}x-\bruch{1}{2}y| = \bruch{1}{2} |x-y| \forall x, y \in M [/mm]
Daraus folgt f ist Kontraktion, also müsste nach dem Banachschen Fixpunktsatz f genau einen Fixpunkt haben.
Aber f ist eine Gerade durch den Ursprung, hat also keinen Fixpunkt in (0, [mm] \infty). [/mm]

Hallo!

Ich glaube die Argumentation verstanden zu haben: Hier wird gezeigt, dass man vorsichtig mit den Voraussetzungen sein muss, bevor man den Satz anwenden kann, denn eine der Voraussetzungen für den Banachschen Fixpunktsatz können nicht erfüllt sein.
Ist das soweit richtig?

Dann stellt sich mir die Frage, welche Voraussetzung nicht erfüllt ist. Ich kam darauf, dass es das sein müsste, dass M kein vollständig metrischer Raum sei. Das heißt es müsste eine Cauchy-Folge [mm] (x_n)_{n \in \IN} [/mm] aus M geben, die keinen Grenzwert in M hat.
Stimmt das?

Wenn ja, wie finde ich so eine Cauchy-Folge?
Wenn nein, was verstehe ich falsch?

Es wäre super, wenn mir hier jemand beim Verständnis helfen könnte!
Liebe Grüße,
Lily

        
Bezug
Banachscher Fixpunktsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 So 12.06.2016
Autor: fred97


> Gegenbeispiel zu Banachschem Fixpunktsatz:
>  
> Sei [mm]M:= (0, \infty) \subset \IR, f: M \to M[/mm] definiert mit
> [mm]f(x):= \bruch{1}{2}x.[/mm]
>  Dann gilt [mm]|f(x)-f(y)| = |\bruch{1}{2}x-\bruch{1}{2}y| = \bruch{1}{2} |x-y| \forall x, y \in M[/mm]
>  
> Daraus folgt f ist Kontraktion, also müsste nach dem
> Banachschen Fixpunktsatz f genau einen Fixpunkt haben.
>  Aber f ist eine Gerade durch den Ursprung, hat also keinen
> Fixpunkt in (0, [mm]\infty).[/mm]
>  Hallo!
>  
> Ich glaube die Argumentation verstanden zu haben: Hier wird
> gezeigt, dass man vorsichtig mit den Voraussetzungen sein
> muss, bevor man den Satz anwenden kann, denn eine der
> Voraussetzungen für den Banachschen Fixpunktsatz können
> nicht erfüllt sein.
>  Ist das soweit richtig?

ja


>  
> Dann stellt sich mir die Frage, welche Voraussetzung nicht
> erfüllt ist. Ich kam darauf, dass es das sein müsste,
> dass M kein vollständig metrischer Raum sei. Das heißt es
> müsste eine Cauchy-Folge [mm](x_n)_{n \in \IN}[/mm] aus M geben,
> die keinen Grenzwert in M hat.
> Stimmt das?
>  

ja


> Wenn ja, wie finde ich so eine Cauchy-Folge?

wie wäre es mit einer Nullfolge ?

fred



>  Wenn nein, was verstehe ich falsch?
>  
> Es wäre super, wenn mir hier jemand beim Verständnis
> helfen könnte!
>  Liebe Grüße,
>  Lily


Bezug
                
Bezug
Banachscher Fixpunktsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:38 So 12.06.2016
Autor: Mathe-Lily

düdüm... das offensichtlichste übersehen ^^ Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]