www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Bahngleichung & Vertretersyst.
Bahngleichung & Vertretersyst. < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bahngleichung & Vertretersyst.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:15 Mo 25.05.2020
Autor: teskiro

Aufgabe
Die Gruppe $G$ operiere auf der endlichen Menge [mm] $\Omega$. [/mm] Dann gilt für [mm] $\omega \in \Omega$ [/mm]


[mm] $\vert [/mm] G: [mm] G_{\omega} \vert [/mm] = [mm] \vert \omega^{G} \vert$ [/mm]

und es gibt ein Vertretersystem [mm] $\omega_{1}, \ldots, \omega_{n} \in \Omega$, [/mm] so dass


[mm] $\vert \Omega \vert [/mm] = [mm] \sum\limits_{i = 1}^{n} \vert \omega_{i}^{G} \vert [/mm] = [mm] \sum\limits_{i = 1}^{n} \vert [/mm] G : [mm] G_{\omega_{i}} \vert$ [/mm]

Morgen!

Ich soll die obige Gleichung beweisen. Ich denke, das ist mir ganz gut gelungen, aber ich habe noch Fragen zu meinem Beweis.



Ansatz:



Betrachte die Abbildung [mm] $\beta: G/g_{\omega} \rightarrow \omega^{G}, [/mm] g [mm] \cdot G_{\omega} \mapsto [/mm] g [mm] \* \omega$ [/mm]

Ich möchte zeigen, dass [mm] $\beta$ [/mm] wohldefiniert und bijektiv ist.




Seien $g,  h [mm] \in [/mm] G$.

Angenommen, es gelte $g [mm] \* \omega [/mm] = h [mm] \* \omega$. [/mm]

Durch Äquivalenzumformung erhalten wir


$g [mm] \* \omega [/mm] = h [mm] \* \omega\quad \vert\quad \* h^{- 1}$ [/mm]

[mm] $\Leftrightarrow [/mm] $ [mm] $h^{- 1} \* [/mm] ( g [mm] \* \omega) [/mm] = [mm] h^{- 1} \* [/mm] (h [mm] \* \omega) [/mm] = [mm] (h^{- 1} \cdot [/mm] h) [mm] \* \omega [/mm] = [mm] e_{G} \* \omega [/mm] = [mm] \omega$ [/mm]


Es gilt aber auch [mm] $h^{- 1} \* [/mm] ( g [mm] \* \omega) [/mm]  = [mm] (h^{- 1} \cdot [/mm] g ) [mm] \* \omega$. [/mm]

Also gilt [mm] $(h^{- 1} \cdot [/mm] g ) [mm] \* \omega [/mm] = [mm] \omega$ [/mm]


Es ist $g [mm] \* \omega [/mm] = h [mm] \* \omega \Leftrightarrow (h^{- 1} \cdot [/mm] g ) [mm] \* \omega [/mm] = [mm] \omega \Leftrightarrow h^{- 1} \cdot [/mm] g [mm] \in G_{\omega} \Leftrightarrow [/mm] g [mm] \cdot G_{\omega} [/mm] = h [mm] \cdot G_{\omega}$. [/mm]



Wir haben also $g [mm] \* \omega [/mm] = h [mm] \* \omega \Leftrightarrow [/mm] g [mm] \cdot G_{\omega} [/mm] = h [mm] \cdot G_{\omega}$. [/mm]


Die Rückrichtung $g [mm] \* \omega [/mm] = h [mm] \* \omega \Leftarrow [/mm] g [mm] \cdot G_{\omega} [/mm] = h [mm] \cdot G_{\omega}$ [/mm] zeigt die Wohldefiniertheit von [mm] $\beta$. [/mm]

Die Hinrichtung $g [mm] \* \omega [/mm] = h [mm] \* \omega \Rightarrow [/mm] g [mm] \cdot G_{\omega} [/mm] = h [mm] \cdot G_{\omega}$ [/mm] zeigt die Injektivität von [mm] $\beta$. [/mm]


Die Surjektivität von [mm] $\beta$ [/mm] ist klar, da die Linksnebenklasse $g [mm] \cdot G_{\omega}$ [/mm] ein Urbild von $g [mm] \* \omega \in \omega^{G}$ [/mm] unter [mm] $\beta$ [/mm] ist.


Also ist [mm] $\beta$ [/mm] bijektiv und es gilt [mm] $\vert [/mm] G : [mm] G_{\omega} \vert [/mm] = [mm] \vert \omega^{G} \vert$. [/mm]



Nun ist [mm] $\Omega$ [/mm] die disjunkte Vereinigung der Bahnen unter $G$.

Wählen wir ein Vertretersystem [mm] $\omega_{1}, \ldots, \omega_{n}$ [/mm] für die Bahnen (es gibt immer ein Vertretersystem für die Bahnen einer Gruppe, da $G$ mindestens die Bahn [mm] $e^{G} [/mm] = G$ besitzt ), so gilt

[mm] $\Omega [/mm] = [mm] \dot{\bigcup\limits_{i = 1}^{n} \omega_{i}^{G}}$, [/mm] woraus dann die Gleichheit

[mm] $\vert \Omega \vert [/mm] = [mm] \sum\limits_{i = 1}^{n} \vert \omega_{i}^{G} \vert [/mm] = [mm] \sum\limits_{i = 1}^{n} \vert [/mm] G : [mm] G_{\omega_{i}} \vert$ [/mm] folgt.




Stimmt mein Beweis so ? Oder habe ich an einer Stelle nicht ausreichend genug argumentiert ?

Zudem wollte ich noch fragen, ob ein Vertretersystem immer existiert (nicht nur in Bezug auf Bahnen) ?


Dass das Vertretersystem der Bahnen endlich ist, sprich wir haben endlich viele Bahnen, liegt einfach nur daran, dass [mm] $\Omega$ [/mm] endlich ist, oder ?


Wäre [mm] $\Omega$ [/mm] unendlich, dann hätten wir endlich viele Bahnen mit jeweils unendlich vielen Elementen, unendlich viele Bahnen mit jeweils endlich vielen Elementen oder unendlich viele Bahnen mit jeweils unendlich vielen Elementen.

Wenn also [mm] $\Omega$ [/mm] nicht endlich wäre, dann kann das Vertretersystem der Bahnen endlich oder nicht endlich sein. Stimmt das so ?


Freue mich auf eine Antwort!

lg, Tim

        
Bezug
Bahngleichung & Vertretersyst.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 So 31.05.2020
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]