www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - B(X)-B(Y)-messbar
B(X)-B(Y)-messbar < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

B(X)-B(Y)-messbar: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 25.04.2019
Autor: TS85

Aufgabe
Zeigen Sie, dass jede stetige Abbildung f: X [mm] \to [/mm] Y zwischen metrischen Räumen X,Y [mm] \mathcal{B}(X)-\mathcal{B}(Y)-messbar [/mm] ist.

Ersteinmal: Liege ich damit richtig, dass hier die [mm] Borelsche-\sigma [/mm] Algebra
gemeint ist?

Als Beweis würde ich dann anführen, dass [mm] \mathcal{B}(Y) [/mm] von den offenen Mengen [mm] \mathcal{O}(Y) [/mm] von Y erzeugt wird.
Es sei dazu V [mm] \in \mathcal{O}(Y). [/mm] Wegen der Stetigkeit von
f ist [mm] f^{-1}(V) \in \mathcal{O}(X). [/mm] Und [mm] \mathcal{O}(X) \subseteq \mathcal{B}(X). [/mm]

Ist die Argumentation richtig und fehlt irgendetwas? Falls die Argumentation falsch ist, wie geht es richtig?

        
Bezug
B(X)-B(Y)-messbar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:44 Do 25.04.2019
Autor: fred97


> Zeigen Sie, dass jede stetige Abbildung f: X [mm]\to[/mm] Y zwischen
> metrischen Räumen X,Y
> [mm]\mathcal{B}(X)-\mathcal{B}(Y)-messbar[/mm] ist.
>  Ersteinmal: Liege ich damit richtig, dass hier die
> [mm]Borelsche-\sigma[/mm] Algebra
>  gemeint ist?

Das würde ich vermuten. Du hörst doch die Vorlesung, dort werden Bezeichnungen eingeführt, also solltest Du diese kennen.


>  
> Als Beweis würde ich dann anführen, dass [mm]\mathcal{B}(Y)[/mm]
> von den offenen Mengen [mm]\mathcal{O}(Y)[/mm] von Y erzeugt wird.
>  Es sei dazu V [mm]\in \mathcal{O}(Y).[/mm] Wegen der Stetigkeit
> von
>  f ist [mm]f^{-1}(V) \in \mathcal{O}(X).[/mm] Und [mm]\mathcal{O}(X) \subseteq \mathcal{B}(X).[/mm]
>  
> Ist die Argumentation richtig und fehlt irgendetwas?


Es fehlt noch was . Du hast nur gezeigt: ist V offen in Y, so ist  $ [mm] f^{-1}(V) \in \mathcal{B}(X). [/mm] $

Zeige dies auch für $V [mm] \in \mathcal{B}(Y).$ [/mm]


> Falls
> die Argumentation falsch ist, wie geht es richtig?


Bezug
                
Bezug
B(X)-B(Y)-messbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Do 25.04.2019
Autor: TS85

Der gleiche Vorgang nur anders herum mit der Folgerung, dass [mm] \mathcal{B}(X)-\mathcal{B}(Y)-messbar [/mm] ist? Vermutlich nicht?

Bezug
                        
Bezug
B(X)-B(Y)-messbar: Antwort
Status: (Antwort) fertig Status 
Datum: 14:59 Do 25.04.2019
Autor: Gonozal_IX

Hiho,

> Der gleiche Vorgang nur anders herum

was soll denn "anders herum" sein?

Ihr hattet bestimmt sowas wie:
Sei $f: [mm] (X,\mathcal{A}) \to (Y,\mathcal{B})$ [/mm] eine Abbildung zwischen zwei meßbaren Räumen und [mm] $\mathcal{C}$ [/mm] ein Erzeuger von [mm] $\mathcal{B}$ [/mm] (d.h. [mm] $\sigma(\mathcal{C}) [/mm] = [mm] \mathcal{B}$) [/mm] so gilt:

f ist [mm] $\mathcal{A} [/mm] - [mm] \mathcal{B}$ [/mm] - meßbar, genau dann, wenn [mm] $f^{-1}(C) \in \mathcal{A}$ [/mm] für alle $C [mm] \in \mathcal{C}$ [/mm]

Es reicht also, alle Elemente eines Erzeugers der Bild-Sigma-Algebra zu betrachten anstatt die gesamte Sigma-Algebra.

Falls nicht: Zeige es!

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]