www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Bézier-Technik
Bézier-Technik < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bézier-Technik: Polynom und Polygon
Status: (Frage) beantwortet Status 
Datum: 17:35 Do 05.03.2009
Autor: Pacapear

Hallo!

Bei Bezier-Polynomen ist es ja so, dass sie sich an das durch die Bezier-Punkte laufenden Bezier-Polygon annähern und in den Endpunkten sogar übereinstimmen (also beide im Bezier-Punkt liegen).

Das mit den Endpunkten hab ich verstanden, dass kann man über die Ableitung sehen (die nullte Ableitung am Endpunkt ist genau der Bezierpunkt).

Nun sollen auch die Tangente im Endpunkt und die Polgonzugstrecke durch den Endpunkt übereinstimmen. Wie sehe ich das? Auch irgendwie über Ableitung, aber ich kann das nicht nachvollziehen, in meinem Buch steht nur "folgt aus Satz xy".

Und in den Nicht-Endpunkten "zieht" das Bezier-Polynom ja auch zu den Bezierpunkten hin. Auch hier steht in meinem Buch nur ein Satz. Es soll irgendwas damit zu tun haben, dass das i-te Bernsteinpolynom am der Stelle [mm] \lambda=\bruch{i}{n} [/mm] ein Maximum hat, und deshalb "zieht" das Polynom am Bezier-Punkt [mm] b_i [/mm] eben in diese Richtung. Diese Erklärung versteh ich überhaupt nicht, und in unserer Mitschrift ist dazu gar nichts gesagt...

Kann mir das jemand erklären?

LG, Nadine

        
Bezug
Bézier-Technik: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Fr 06.03.2009
Autor: reverend

Hallo Nadine,

hast Du schon die kleinen Java-Animationen bei Wikipedia gesehen ([]Deutsch, besser noch []Englisch).

Schau dir die mal an und nimm dann eine Bézierkurve zweiten Grades und berechne sie. Danach kannst Du noch überlegen, was passiert, wenn jeweils ein weiterer Punkt hinzukommt.

Grüße
reverend

PS: Warum stellst Du Deine Fragen eigentlich "unbefristet"?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]