www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - B-adisches System
B-adisches System < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

B-adisches System: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Fr 23.05.2014
Autor: MissJule

Aufgabe
Seien B, k [mm] \in \IN, [/mm] B [mm] \ge [/mm] 2, k [mm] \ge [/mm] 1. Schreiben Sie die Zahlen
(a) [mm] \bruch{1}{B^{k}} [/mm]
(b) [mm] \bruch{1}{B^{k} - 1} [/mm]
(c) [mm] \bruch{1}{B^{k} + 1} [/mm]
(d) [mm] \bruch{1}{\summe_{i=0}^{k} B^{i}} [/mm]
im B-adischen System.
Hinweis: Ein Taschenrechner könnte nützlich zur Ideenfindung sein; für das Basteln eines Beweises könnten die geometrische Summe / Reihe von Nutzen sein. Oder Sie nutzen die geometrische Summe / Reihe direkt zum Finden eines Beweises.




Hallo,

ich stehe bei Aufgabenteil c an.

Was ich bereits habe:

Teil a) [mm] \bruch{1}{B^{k}} [/mm] ist in B-adischer Darstellung
0.0....01, wobei die 1 k Stellen rechts neben dem Komma steht, dies folgt direkt aus dem Bildungsgesetz der B-adischen Zahlen.

Teil b) Ideenfindung im Binärsystem:
[mm] \bruch{1}{2^{1} - 1} [/mm] = 1.0
[mm] \bruch{1}{2^{2} - 1} [/mm] = [mm] \bruch{1}{3} [/mm]  = [mm] 0.\overline{01} [/mm]
[mm] \bruch{1}{2^{3} - 1} [/mm] = [mm] \bruch{1}{7} [/mm]  = [mm] 0.\overline{001} [/mm]
usw.
Behauptung:  [mm] \bruch{1}{B^{k} - 1} [/mm] ist die Zahl, bei der jeweils die i * b-te Stelle nach dem Komma gleich 1 ist und alle anderen Stellen 0 sind, wobei i [mm] \in \IN [/mm] alle Werte von 1 bis unendlich annimmt.

Beweis:
Es gilt:
[mm] \bruch{1}{B^{k} - 1} [/mm] = [mm] \summe_{i=1}^{\infty} a_{i} [/mm] * [mm] (\bruch{1}{B})^{i} [/mm]
wobei [mm] a_{i} [/mm] = 1 für alle [mm] a_{i} [/mm] teilbar durch k gilt, für alle anderen [mm] a_{i} [/mm] ist B = 0

es folgt:

[mm] \bruch{1}{B^{k} - 1} [/mm]
= [mm] \summe_{i=1}^{\infty} (\bruch{1}{B})^{k*i} [/mm]
= [mm] \summe_{i=1}^{\infty} (\bruch{1}{B^{k}})^{i} [/mm]
= [mm] \bruch{1}{B^{k}} \summe_{i=1}^{\infty} [/mm] * [mm] (\bruch{1}{B^{k}})^{i-1} [/mm]
= [mm] \bruch{1}{B^{k}} \summe_{i=0}^{\infty} [/mm] * [mm] (\bruch{1}{B^{k}})^{i} [/mm]

mit der geometrischen Summenformel folgt:

[mm] \bruch{1}{B^{k} - 1} [/mm]
= [mm] \bruch{1}{B^{k}} [/mm] * [mm] \bruch{1}{1 - \bruch{1}{B^{k}}} [/mm]
= [mm] \bruch{1}{B^{k}} [/mm] * [mm] \bruch{B^{k}}{B^{k} - 1} [/mm]
= [mm] \bruch{1}{B^{k} - 1} [/mm]

Soweit so gut, hoffe das passt so in der Art.

Teil c) Da habe ich bis jetzt folgendes:
Ideenfindung im Binärsystem:
[mm] \bruch{1}{2^{1} + 1} [/mm] = [mm] \bruch{1}{3} [/mm]  = [mm] 0.\overline{01} [/mm]
[mm] \bruch{1}{2^{2} + 1} [/mm] = [mm] \bruch{1}{5} [/mm]  = [mm] 0.\overline{0011} [/mm]
[mm] \bruch{1}{2^{3} + 1} [/mm] = [mm] \bruch{1}{9} [/mm]  = [mm] 0.\overline{000111} [/mm]

Ich versuche zu beweisen:
Es gilt:
[mm] \bruch{1}{B^{k} + 1} [/mm] = [mm] \summe_{i=1}^{\infty} a_{i} [/mm] * [mm] (\bruch{1}{B})^{i} [/mm]
wobei [mm] a_{i} [/mm] = 1 für alle  [mm] a_{i} \in \{ i * ((k+1), ...., 2k) \}, [/mm] für alle anderen [mm] a_{i} [/mm] ist B = 0

Hier hätte ich die Gleichung:  [mm] \summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (k+1)} [/mm] + ... [mm] +\summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (2k)} [/mm]

Jetzt stehe ich vor dem Problem, dass ich hier nicht sehe, wo ich die geometrische Reihe einsetzen kann, denn ich sollte jetzt wohl aus jeder einzelnen Summe [mm] (\bruch{1}{B})^{irgendwas} [/mm] herausheben, finde aber keine sinnvolle Möglichkeit, dies nicht in Abhängigkeit von i zu tun. Wobei: eventuell kann ich ja jede Summe für sich betrachten... hmm muss ich noch probieren.

Hat jemand einen Tipp für mich?

liebe Grüße,
MissJule

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
B-adisches System: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Fr 23.05.2014
Autor: abakus


> Seien B, k [mm]\in \IN,[/mm] B [mm]\ge[/mm] 2, k [mm]\ge[/mm] 1. Schreiben Sie die
> Zahlen
> (a) [mm]\bruch{1}{B^{k}}[/mm]
> (b) [mm]\bruch{1}{B^{k} - 1}[/mm]
> (c) [mm]\bruch{1}{B^{k} + 1}[/mm]
> (d)
> [mm]\bruch{1}{\summe_{i=0}^{k} B^{i}}[/mm]
> im B-adischen System.
> Hinweis: Ein Taschenrechner könnte nützlich zur
> Ideenfindung sein; für das Basteln eines Beweises könnten
> die geometrische Summe / Reihe von Nutzen sein. Oder Sie
> nutzen die geometrische Summe / Reihe direkt zum Finden
> eines Beweises.

>
>
>

> Hallo,

>

> ich stehe bei Aufgabenteil c an.

>

> Was ich bereits habe:

>

> Teil a) [mm]\bruch{1}{B^{k}}[/mm] ist in B-adischer Darstellung
> 0.0....01, wobei die 1 k Stellen rechts neben dem Komma
> steht, dies folgt direkt aus dem Bildungsgesetz der
> B-adischen Zahlen.

>

> Teil b) Ideenfindung im Binärsystem:
> [mm]\bruch{1}{2^{1} - 1}[/mm] = 1.0
> [mm]\bruch{1}{2^{2} - 1}[/mm] = [mm]\bruch{1}{3}[/mm] = [mm]0.\overline{01}[/mm]
> [mm]\bruch{1}{2^{3} - 1}[/mm] = [mm]\bruch{1}{7}[/mm] = [mm]0.\overline{001}[/mm]
> usw.
> Behauptung: [mm]\bruch{1}{B^{k} - 1}[/mm] ist die Zahl, bei der
> jeweils die i * b-te Stelle nach dem Komma gleich 1 ist und
> alle anderen Stellen 0 sind, wobei i [mm]\in \IN[/mm] alle Werte von
> 1 bis unendlich annimmt.

>

> Beweis:
> Es gilt:
> [mm]\bruch{1}{B^{k} - 1}[/mm] = [mm]\summe_{i=1}^{\infty} a_{i}[/mm] *
> [mm](\bruch{1}{B})^{i}[/mm]
> wobei [mm]a_{i}[/mm] = 1 für alle [mm]a_{i}[/mm] teilbar durch k gilt, für
> alle anderen [mm]a_{i}[/mm] ist B = 0

>

> es folgt:

>

> [mm]\bruch{1}{B^{k} - 1}[/mm]
> = [mm]\summe_{i=1}^{\infty} (\bruch{1}{B})^{k*i}[/mm]
> = [mm]\summe_{i=1}^{\infty} (\bruch{1}{B^{k}})^{i}[/mm]
> =
> [mm]\bruch{1}{B^{k}} \summe_{i=1}^{\infty}[/mm] *
> [mm](\bruch{1}{B^{k}})^{i-1}[/mm]
> = [mm]\bruch{1}{B^{k}} \summe_{i=0}^{\infty}[/mm] *
> [mm](\bruch{1}{B^{k}})^{i}[/mm]

>

> mit der geometrischen Summenformel folgt:

>

> [mm]\bruch{1}{B^{k} - 1}[/mm]
> = [mm]\bruch{1}{B^{k}}[/mm] * [mm]\bruch{1}{1 - \bruch{1}{B^{k}}}[/mm]
> = [mm]\bruch{1}{B^{k}}[/mm] * [mm]\bruch{B^{k}}{B^{k} - 1}[/mm]
> =
> [mm]\bruch{1}{B^{k} - 1}[/mm]

>

> Soweit so gut, hoffe das passt so in der Art.

>

> Teil c) Da habe ich bis jetzt folgendes:
> Ideenfindung im Binärsystem:
> [mm]\bruch{1}{2^{1} + 1}[/mm] = [mm]\bruch{1}{3}[/mm] = [mm]0.\overline{01}[/mm]
> [mm]\bruch{1}{2^{2} + 1}[/mm] = [mm]\bruch{1}{5}[/mm] = [mm]0.\overline{0011}[/mm]
> [mm]\bruch{1}{2^{3} + 1}[/mm] = [mm]\bruch{1}{9}[/mm] =
> [mm]0.\overline{000111}[/mm]

>

> Ich versuche zu beweisen:
> Es gilt:
> [mm]\bruch{1}{B^{k} + 1}[/mm] = [mm]\summe_{i=1}^{\infty} a_{i}[/mm] *
> [mm](\bruch{1}{B})^{i}[/mm]
> wobei [mm]a_{i}[/mm] = 1 für alle [mm]a_{i} \in \{ i * ((k+1), ...., 2k) \},[/mm]
> für alle anderen [mm]a_{i}[/mm] ist B = 0

>

> Hier hätte ich die Gleichung: [mm]\summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (k+1)}[/mm]
> + ... [mm]+\summe_{i=1}^{\infty} (\bruch{1}{B})^{i* (2k)}[/mm]

>

> Jetzt stehe ich vor dem Problem, dass ich hier nicht sehe,
> wo ich die geometrische Reihe einsetzen kann, denn ich
> sollte jetzt wohl aus jeder einzelnen Summe
> [mm](\bruch{1}{B})^{irgendwas}[/mm] herausheben, finde aber keine
> sinnvolle Möglichkeit, dies nicht in Abhängigkeit von i
> zu tun. Wobei: eventuell kann ich ja jede Summe für sich
> betrachten... hmm muss ich noch probieren.

>

> Hat jemand einen Tipp für mich?

Hallo,
durch Erweitern erhält man [mm] \frac{1}{B^k+1}= \frac{B^k-1}{B^{2k}-1}=(B^k-1)\frac{1}{B^{2k}-1}[/mm].
Hilft das vielleicht?
(Bin mir selbst nicht sicher.)
Gruß Abakus
>

> liebe Grüße,
> MissJule

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]