www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Axiomatik der natürlichen Zahl
Axiomatik der natürlichen Zahl < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Axiomatik der natürlichen Zahl: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 11:43 Di 15.05.2007
Autor: Sarah86

Aufgabe
Auch im Kardinalzahlaspekt können Rechenoperationen wie
Addition und Multiplikation folgendermaßen eingeführt werden:
Sei [mm]Omega[/mm] eine Menge endlicher Mengen und seien A, B [mm] \in \Omega [/mm].
Addition: a + b = [mm]\left I A \cup B\right I[/mm], falls [mm]A\ cap B\ =\emptyset[/mm]
Multiplikation: [mm]a * b = \left I A \times B\right I[/mm]
a) Warum muß man bei der Definition der Addition [mm]A \cap B\ =\ emptyset[/mm] voraussetzen? Erläutern Sie dies!
b) Beweisen Sie im Kardinalzahlaspekt mit Hilfe der Definitionen von Addition, Multiplikation und Gleichmächtigkeit von Mengen folgende Rechengesetze:
i) a + b = b + a ,
ii) [mm]a *b = b *a[/mm] ,
iii)[mm]a * ( b +c ) =a *b +a *c[/mm].

Hallo zusammen!
Ich muss für die Uni folgende Aufgabe lösen:

Zu a) denke ich, dass [mm]A \cap B\ =\ emptyset[/mm] vorausgesetzt werden müssen, weil A und B verschiedene Elemente enthalten muss. Wenn sie u.a. gleiche Elemente enthielten wäre 2+3 nicht 5 sondern vielleicht 3.
Mit der b) bin ich ziemlich überfordert.
i) wenn a + b = [mm]\left I A \cup B \right I[/mm], kann man das ja eigentlich einfach umdrehen. Aber mir scheint das nicht wirklich ein Beweis für die Aussage zu sein.
Bei ii) würd ich auch so vorgehen, sehe aber das gleiche Problem wie bei i)
Könnte man auch sagen, dass die Mengen [mm]\left I A \cup B \right I[/mm] und [mm]\left I B \cup A \right I[/mm] gleichmächtig sind, oder hab ich das falsch verstanden?

Danke schon mal für jeden Tipp, den ich bekomme.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Axiomatik der natürlichen Zahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Di 15.05.2007
Autor: generation...x

Da [mm]A \cup B = B \cup A [/mm] und [mm]A \times B = B \times A [/mm] sind die resultierenden Mengen natürlich auch gleichmächtig. Aufgabenteil iii) funktioniert analog.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]