www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Automorphismengruppe
Automorphismengruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Automorphismengruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 So 02.01.2011
Autor: mathequestion2

Sorry für die vielen Fragen. Ich hatte gehofft es selber lösen zu können.
Aufgabe
Bestimmen Sie hier die Gruppe [mm]Aut(K/k)[/mm].
a) Für [mm]k = \IQ[/mm] und K der Zerfällungskörper von [mm]X^4 +X^3 +X^2 +X +1 \in \IQ[X][/mm].
b) Für [mm]k = \IF_2[/mm] und K der Zerfällungskörper von [mm]X^3 - X^2 + 1 \in \IF_2[X][/mm].


für die a) gibt es 4 Nullstellen. Kann ich die Aufgabe lösen, ohne explizit die Nullstellen zu berechen. Ich glaube, dass das auch der Sinn ist. Von den früheren Threads hier hatte ich gelesen, dass Identität und [mm]\sigma(i)=-i[/mm] zwei Automorphismen sind. Wie geht man da vor?

für die b)
Selbst wenn ich die Nullstellen explizit mit dem Computer ausrechne, sehe ich keine Automorphismen. hat jemand einen Tipp für mich?


        
Bezug
Automorphismengruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 So 02.01.2011
Autor: felixf

Moin!

> Sorry für die vielen Fragen. Ich hatte gehofft es selber
> lösen zu können.
> Bestimmen Sie hier die Gruppe [mm]Aut(K/k)[/mm].
>  a) Für [mm]k = \IQ[/mm] und K der Zerfällungskörper von [mm]X^4 +X^3 +X^2 +X +1 \in \IQ[X][/mm].
>  
> b) Für [mm]k = \IF_2[/mm] und K der Zerfällungskörper von [mm]X^3 - X^2 + 1 \in \IF_2[X][/mm].
>  
> für die a) gibt es 4 Nullstellen. Kann ich die Aufgabe
> lösen, ohne explizit die Nullstellen zu berechen.

Ja. Beachte, dass die Nullstellen primitive fuenfte Einheitswurzeln sind. (Das Polynom ist gleich [mm] $\frac{X^5 - 1}{X - 1}$.) [/mm]

> Ich
> glaube, dass das auch der Sinn ist. Von den früheren
> Threads hier hatte ich gelesen, dass Identität und
> [mm]\sigma(i)=-i[/mm] zwei Automorphismen sind. Wie geht man da
> vor?

Wieso sollte das Element $i$ im Koerper liegen?

> für die b)
> Selbst wenn ich die Nullstellen explizit mit dem Computer
> ausrechne, sehe ich keine Automorphismen. hat jemand einen
> Tipp für mich?

Es ist eine Erweiterung von endlichen Koerpern. Da kann man die Galoisgruppe explizit angeben und sofort sagen, wie die Struktur aussieht, sobald du den Koerpererweiterungsgrad kennst. Tipp: kennst du den Frobenius-Automorphismus?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]