www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Aut(G)
Aut(G) < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aut(G): Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:39 So 13.05.2012
Autor: Big_Head78

Aufgabe
Sei G Gruppe.

i) Zeigen sie, dass Aut(G)= { f:G [mm] \rightarrow [/mm] G | f ist bijektiver Grp.homo. }
ii) Zeigen sie, dass [mm] \alpha: [/mm] G [mm] \rightarrow [/mm] Aut(G) mit g [mm] \rightarrow \alpha_{g} [/mm] mit [mm] \alpha(h)= [/mm] g [mm] \circ [/mm] h [mm] \circ g^{-1} [/mm] ein Grp.homo. ist.
iii) Berechnen sie den Grp.homo. [mm] \alpha [/mm] aus ii) für die beiden Gruppen G1= [mm] \IZ/6\IZ [/mm] und G2=S3.

Hallo zusammen,

also i und ii habe ich hinbekommen, doch leider habe ich Probleme dann den entsprechenden Grp.homo. zu finden...ich weiss nicht, wie ich das anstellen muss. :( Kann mir da bitte jemand helfen?

        
Bezug
Aut(G): Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 So 13.05.2012
Autor: hippias

Was hier genau mit "den Gruppenhomomorphismus berechnen" gemeint ist, kann ich auch nicht sagen. Auf jeden Fall koenntest Du versuchen Kern und Bild von [mm] $\alpha$ [/mm] zu bestimmen.

Bezug
        
Bezug
Aut(G): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 So 13.05.2012
Autor: R0unde66

Hi!
Kannst du i und ii vielleicht mal erklären :-) ?
Danke

Bezug
                
Bezug
Aut(G): Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 So 13.05.2012
Autor: Big_Head78

i)

1.Ich habe die Abgeschlossenheit geziegt, jede bij. Abb. verknüpft mit einer bij. Abb. ist wieder eine bij. Abb. f [mm] \in [/mm] Aut(G)

2. Assoziativität: Ist bei Kompositionen von Abb. immer erfüllt

3. Neutrales Element: f: x [mm] \rightarrow [/mm] x ist neutrale Abb., also neutrales Element.

4. Inverse: Die Inverse ist die Umkehrfkt. [mm] f^{-1} [/mm] . [mm] f^{-1} [/mm] ist wieder Grp.homo.: [mm] z=xy=f^{-1}(z)= f^{-1}(xy)=f^{-1}(x) f^{-1}(y)=xy=z [/mm]

[mm] \Rightarrow [/mm] Aut(G) ist Gruppe

ii) xy=z mit x,y,z [mm] \in [/mm] G

[mm] \Rightarrow \alpha_{g}(z)=gzg^{-1} =\alpha_{g}(xy)= gxyg^{-1} [/mm]
[mm] \alpha_{g}(x) \alpha_{g}(y)= gxg^{-1} gyg^{-1}=gxeyg^{-1}=gxyg^{-1}= \alpha_{g}(xy)= \alpha_{g}(z) [/mm]
[mm] \Rightarrow \alpha [/mm] ist Grp.homo.

Und bei iii) komme ich nicht weiter...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]