www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Austauschsatz von Steinitz
Austauschsatz von Steinitz < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Austauschsatz von Steinitz: Bedeutung
Status: (Frage) beantwortet Status 
Datum: 14:50 Mo 22.10.2007
Autor: elefanti

Hallo ihr,

wir haben als Austauschlemma, wann man einen Vektor einer Basis gegen einen anderen Vektor austauschen kann, ohne die Basiseigenschaft zu verlieren.
Nun haben wir aber auch den Austauschsatz von Steinitz: Sei B eine endliche Basis einen Vektorraumes V und M [mm] \subset [/mm] V eine endliche Menge linear unabhängiger Vektoren. Dann gilt:
i) |M|<=|B|
[mm] ii)\exists [/mm] B' [mm] \subset [/mm] B mit |M|=|B'|, so dass M [mm] \cup [/mm] (B \ B') wieder eine Basis von V ist.

Irgendwie verstehe ich den Austauschsatz nicht. Kann mir jemand den (mit Worten) erklären? Was sagt der Austauschsatz aus?


Liebe Grüße
Elefanti

        
Bezug
Austauschsatz von Steinitz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:30 Mo 22.10.2007
Autor: angela.h.b.


> Nun haben wir aber auch den Austauschsatz von Steinitz: Sei
> B eine endliche Basis einen Vektorraumes V und M [mm]\subset[/mm] V
> eine endliche Menge linear unabhängiger Vektoren. Dann
> gilt:
>  i) |M|<=|B|
>  [mm]ii)\exists[/mm] B' [mm]\subset[/mm] B mit |M|=|B'|, so dass M [mm]\cup[/mm] (B \
> B') wieder eine Basis von V ist.
>  
> Irgendwie verstehe ich den Austauschsatz nicht. Kann mir
> jemand den (mit Worten) erklären? Was sagt der
> Austauschsatz aus?

Hallo,

Du hast den Vektorraum V mit der Basis [mm] B=(b_1,...,b_n) [/mm] und eine Menge linear unabhängiger Vektoren [mm] M=(m_1,...,m_k)\subseteq [/mm] V.

Es muß [mm] k\le [/mm] n sein, denn B ist ja eine Basis des Vektorraumes.

Wenn man nun die Vektoren in B geeignet numeriert hat, dann ist [mm] (m_1,...,m_k, b_{k+1},...,b_n) [/mm]  eine Basis von V.

Die linear unabhängige Teilmenge [mm] B':=(b_1,...,b_k)\subseteq [/mm] B wird durch M ausgetauscht.

Gruß v. Angela

P.S.: Irgendwie scheint in Eurer Vorlesung die Verschleierungstaktik angewendet zu werden... Neulich hattest Du doch schonmal sowas in der Art.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]