www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Aussagenlogik
Aussagenlogik < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: Äquivalenzumformung
Status: (Frage) beantwortet Status 
Datum: 12:49 Di 26.07.2011
Autor: DARKMAN_X

Aufgabe
Gegeben seien die folgenden aussagenlogische Formeln:
F = [mm] \neg(A \Rightarrow [/mm] B) [mm] \wedge [/mm] (A [mm] \gdw [/mm] C)
und
G = A [mm] \wedge \neg [/mm] B [mm] \wedge [/mm] C

Wandeln Sie beide Formeln mit Hilfe der Aquivalenzgesetze ineinander um. Geben Sie bei jeder Umformung das verwendete Aquivalenzgesetz an.

F = [mm] \neg(A \Rightarrow [/mm] B) [mm] \wedge [/mm] (A [mm] \gdw [/mm] C)
= [mm] \neg (\neg [/mm] A [mm] \vee [/mm] B) [mm] \wedge [/mm] ((A [mm] \wedge [/mm] C) [mm] \vee (\neg [/mm] A [mm] \wedge \neg [/mm] C))

Wende nun das Distributivitätsgesetzt an

= (A [mm] \wedge \neg [/mm] B) [mm] \wedge [/mm] ((A [mm] \vee \neg [/mm] A) [mm] \wedge [/mm] (A [mm] \vee \neg [/mm] C) [mm] \wedge [/mm] (C [mm] \vee \neg [/mm] A) [mm] \wedge [/mm] (C [mm] \vee \neg [/mm] C))

So jetzt kürze ich...

= (A [mm] \wedge \neg [/mm] B) [mm] \wedge [/mm] ((A [mm] \vee \neg [/mm] C) [mm] \wedge [/mm] (C [mm] \vee \neg [/mm] A))

So ab hier komme ich dann irgendwie nicht mehr weiter...

Würde mich über eure Antworten freuen.
Danke im Vorraus.
Diese Frage wurde in keinem anderem Forun gestellt.

MfG
[mm] DARKMAN_X [/mm]

        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Di 26.07.2011
Autor: Sigrid

Hallo [mm] Darkmann_X [/mm]


> Gegeben seien die folgenden aussagenlogische Formeln:
>  F = [mm]\neg(A \Rightarrow[/mm] B) [mm]\wedge[/mm] (A [mm]\gdw[/mm] C)
> und
> G = A [mm]\wedge \neg[/mm] B [mm]\wedge[/mm] C
>  
> Wandeln Sie beide Formeln mit Hilfe der Aquivalenzgesetze
> ineinander um. Geben Sie bei jeder Umformung das verwendete
> Aquivalenzgesetz an.
>  F = [mm]\neg(A \Rightarrow[/mm] B) [mm]\wedge[/mm] (A [mm]\gdw[/mm] C)
> = [mm]\neg (\neg[/mm] A [mm]\vee[/mm] B) [mm]\wedge[/mm] ((A [mm]\wedge[/mm] C) [mm]\vee (\neg[/mm] A
> [mm]\wedge \neg[/mm] C))


(A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] ((A [mm]\wedge[/mm] C) [mm]\vee (\neg[/mm] A [mm]\wedge \neg[/mm] C))

So weit hattest Du es ja auch
Jetzt wende das Distributivgesetz an, aber nicht die Richtung, die Du gewählt hast.

[(A [mm]\wedge \neg[/mm] B) ) [mm]\wedge [/mm] (A [mm]\wedge[/mm] C)] [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm] B) ) [mm]\wedge [/mm] ( [mm] \neg [/mm] A [mm]\wedge[/mm] [mm] \neg [/mm] C)]

Jetzt bist Du fast fertig.

Gruß
Sigrid




>  
> Wende nun das Distributivitätsgesetzt an
>  
> = (A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] ((A [mm]\vee \neg[/mm] A) [mm]\wedge[/mm] (A [mm]\vee \neg[/mm]
> C) [mm]\wedge[/mm] (C [mm]\vee \neg[/mm] A) [mm]\wedge[/mm] (C [mm]\vee \neg[/mm] C))
>  
> So jetzt kürze ich...
>  
> = (A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] ((A [mm]\vee \neg[/mm] C) [mm]\wedge[/mm] (C [mm]\vee \neg[/mm]
> A))
>  
> So ab hier komme ich dann irgendwie nicht mehr weiter...
>  
> Würde mich über eure Antworten freuen.
>  Danke im Vorraus.
>  Diese Frage wurde in keinem anderem Forun gestellt.
>  
> MfG
>  [mm]DARKMAN_X[/mm]  


Bezug
                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Di 26.07.2011
Autor: DARKMAN_X

Danke für die schnelle Antwort.

[mm] [(A\wedge \neg [/mm] B) [mm] \wedge [/mm] (A [mm] \wedge [/mm] C)] [mm] \vee [/mm] [(A [mm] \wedge \neg [/mm] B) [mm] \wedge (\neg [/mm] A [mm] \wedge \neg [/mm] C)]

Das kommt bei raus wenn ich die innerhalb der eckigen Klammern multipliziere....

[(A [mm] \wedge [/mm] A) [mm] \wedge [/mm] (A [mm] \wedge [/mm] C) [mm] \wedge (\neg [/mm] B [mm] \wedge [/mm] C)] [mm] \vee [/mm] [(A [mm] \wedge \neg [/mm] A) [mm] \wedge [/mm] (A [mm] \wedge \neg [/mm] C) [mm] \wedge (\neg [/mm] B [mm] \wedge [/mm] A) [mm] \wedge (\neg [/mm] B [mm] \wedge \neg [/mm] C)]

Das kommt bei raus...
Weiss leider jetzt nicht mehr weiter...

Bezug
                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 14:53 Di 26.07.2011
Autor: Sigrid

Hallo [mm] DARKMAN_X [/mm]

> Danke für die schnelle Antwort.
>  
> [mm][(A\wedge \neg[/mm] B) [mm]\wedge[/mm] (A [mm]\wedge[/mm] C)] [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm]
> B) [mm]\wedge (\neg[/mm] A [mm]\wedge \neg[/mm] C)]
>
> Das kommt bei raus wenn ich die innerhalb der eckigen
> Klammern multipliziere....

Vorsicht, Jetzt greift das Assoziativgesetz. Du hast innerhalb der Eckigen Klammern nur noch die Verknüpfung  [mm]\wedge [/mm]

Gruß
Sigrid

>  
> [(A [mm]\wedge[/mm] A) [mm]\wedge[/mm] (A [mm]\wedge[/mm] C) [mm]\wedge (\neg[/mm] B [mm]\wedge[/mm] C)]
> [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm] A) [mm]\wedge[/mm] (A [mm]\wedge \neg[/mm] C) [mm]\wedge (\neg[/mm]
> B [mm]\wedge[/mm] A) [mm]\wedge (\neg[/mm] B [mm]\wedge \neg[/mm] C)]
>  
> Das kommt bei raus...
>  Weiss leider jetzt nicht mehr weiter...


Bezug
                                
Bezug
Aussagenlogik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Di 26.07.2011
Autor: DARKMAN_X

Tut mir leid...Ich komme immer noch nicht dadrauf...Verstehe das einfach nicht...

Die Assoziativität besagt:

((F [mm] \wedge [/mm] G) [mm] \wedge [/mm] H) [mm] \equiv [/mm] (F [mm] \wedge [/mm] (G [mm] \wedge [/mm] H))
((F [mm] \vee [/mm] G) [mm] \vee [/mm] H) [mm] \equiv [/mm] (F [mm] \vee [/mm] (G [mm] \vee [/mm] H))

So nun weiß ich jetzt nicht, wie ich es hier anwenden soll...

[(A [mm] \wedge \neg [/mm] B) [mm] \wedge [/mm] (A [mm] \wedge [/mm] C)] [mm] \vee [/mm] [(A [mm] \wedge \neg [/mm] B) [mm] \wedge (\neg [/mm] A [mm] \wedge \neg [/mm] B)]



Bezug
                                        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Di 26.07.2011
Autor: Sigrid

Hallo,

> Tut mir leid...Ich komme immer noch nicht
> dadrauf...Verstehe das einfach nicht...
>  
> Die Assoziativität besagt:
>  
> ((F [mm]\wedge[/mm] G) [mm]\wedge[/mm] H) [mm]\equiv[/mm] (F [mm]\wedge[/mm] (G [mm]\wedge[/mm] H))
>  ((F [mm]\vee[/mm] G) [mm]\vee[/mm] H) [mm]\equiv[/mm] (F [mm]\vee[/mm] (G [mm]\vee[/mm] H))
>
> So nun weiß ich jetzt nicht, wie ich es hier anwenden
> soll...
>  
> [(A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] (A [mm]\wedge[/mm] C)] [mm]\vee[/mm] [(A [mm]\wedge \neg[/mm]
> B) [mm]\wedge (\neg[/mm] A [mm]\wedge \neg[/mm] B)]
>  
>  

Du hast recht, Du brauchst natürlich auch noch das Kommutativgesetz. Jetzt ist die Frage, wie genau Du jeden Schritt belegen musst. Wenn Du mehrere Schritte auf einmal durchführen darfst, kannst Du einfach die runden Klammern weglassen und dann geeignet umstellen.
Wenn Du jeden Schritt blegen musst, wirds etwas aufwendiger. Ich zeig mal den Anfang für die 1. Klammer:

(A [mm]\wedge \neg[/mm] B) [mm]\wedge[/mm] (A [mm]\wedge[/mm]C)

([mm] \neg[/mm] B [mm]\wedge [/mm] A) [mm]\wedge [/mm] (A [mm]\wedge[/mm]C)

[mm] \neg[/mm] B [mm]\wedge [/mm][( A [mm]\wedge [/mm] (A [mm]\wedge[/mm]C))]

[mm] \neg[/mm] B [mm]\wedge [/mm][( A [mm]\wedge [/mm] A )[mm]\wedge[/mm]C]

Kommst Du jetzt weiter?

Gruß
Sigrid


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]