www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Aussagenlogik
Aussagenlogik < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagenlogik: Auflösen von Aussagenverb.
Status: (Frage) beantwortet Status 
Datum: 12:34 Fr 06.01.2006
Autor: SEAGATE

Aufgabe
Anna liebt Peter oder Michael oder ist es nicht so, daß Anna Peter liebt?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


hallo,

vorab die original-aufgabenstellung, die ich wie folgt in die schreibweise der logik gebracht habe:

A [mm] \wedge [/mm] (P [mm] \vee [/mm] M)  [mm] \vee [/mm] (A [mm] \wedge \neg [/mm] P)

der 1. Teil der Aussagenverbindung A [mm] \wedge [/mm] (P [mm] \vee [/mm] M) ist nach dem Distributivgesetz Synonym für:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) .

Also stellt sich die Aussagenverbindung wie folgt dar:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \neg [/mm] P)

Nun komme ich nicht weiter, weil ich der Meinung bin, daß (A [mm] \wedge \neg [/mm] P)
gleichbedeutend mit A [mm] \wedge \{F\} [/mm] ist. (F = Falsch):

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \{F\}) [/mm]

Meine Überlegung:

Da nach den Regeln der Negationen gilt:

(P [mm] \wedge \neg [/mm] P) [mm] \gdw \{F\} [/mm]

habe ich also eine Verneinung auf der rechten Gleichungsseite und eine Zustimmung für Peter auf der linken Gleichungsseite, was mir wiederum "Falsch" zurück liefert.

Damit wäre für mich die Verneinung für Peter bewiesen, und das Wahr für Michael erbracht:

(A [mm] \wedge [/mm] P) [mm] \vee [/mm] (A [mm] \wedge [/mm] M) [mm] \vee [/mm] (A [mm] \wedge \{F\}) [/mm]

nur wie löse ich das jetzt weiter auf? fällt denn Peter jetzt nicht automatisch durch die erhaltene F-Aussage auch aus der linken seite raus,
sodaß links nur noch (A [mm] \wedge [/mm] M) übrig bleibt?

sollte man vieleicht hier diese komplette aussagenverbindung mit einer
wahrheitstabelle darstellen?

kann mir jemand vieleicht einen kleinen Ansatz zur Hilfe geben?

Liebe Grüsse, und herzlichen Dank

SEAGATE



        
Bezug
Aussagenlogik: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Fr 06.01.2006
Autor: mathiash


> Anna liebt Peter oder Michael oder ist es nicht so, daß
> Anna Peter liebt?
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
> hallo,
>  
> vorab die original-aufgabenstellung, die ich wie folgt in
> die schreibweise der logik gebracht habe:
>  
> A [mm]\wedge[/mm] (P [mm]\vee[/mm] M)  [mm]\vee[/mm] (A [mm]\wedge \neg[/mm] P)
>  
> der 1. Teil der Aussagenverbindung A [mm]\wedge[/mm] (P [mm]\vee[/mm] M) ist
> nach dem Distributivgesetz Synonym für:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) .
>  
> Also stellt sich die Aussagenverbindung wie folgt dar:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \neg[/mm] P)
>  
> Nun komme ich nicht weiter, weil ich der Meinung bin, daß
> (A [mm]\wedge \neg[/mm] P)
>  gleichbedeutend mit A [mm]\wedge \{F\}[/mm] ist. (F = Falsch):

Hallo,

nein, Du kannst doch A ausklammern (distrib.) und bekommst

[mm] A\wedge (P\vee\neg P\vee [/mm] M)       was mit [mm] P\vee\neg P\vee [/mm] M [mm] \equiv 1\vee M\equiv [/mm] 1

aequivalent zu [mm] 1\wedge [/mm] A  [mm] \equiv [/mm] A  ist.  

Also: Anna liebt.    (Na, immerhin ! )

Viele Gruesse,

Mathias

>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \{F\})[/mm]
>  
> Meine Überlegung:
>  
> Da nach den Regeln der Negationen gilt:
>  
> (P [mm]\wedge \neg[/mm] P) [mm]\gdw \{F\}[/mm]
>  
> habe ich also eine Verneinung auf der rechten
> Gleichungsseite und eine Zustimmung für Peter auf der
> linken Gleichungsseite, was mir wiederum "Falsch" zurück
> liefert.
>  
> Damit wäre für mich die Verneinung für Peter bewiesen, und
> das Wahr für Michael erbracht:
>  
> (A [mm]\wedge[/mm] P) [mm]\vee[/mm] (A [mm]\wedge[/mm] M) [mm]\vee[/mm] (A [mm]\wedge \{F\})[/mm]
>  
> nur wie löse ich das jetzt weiter auf? fällt denn Peter
> jetzt nicht automatisch durch die erhaltene F-Aussage auch
> aus der linken seite raus,
>  sodaß links nur noch (A [mm]\wedge[/mm] M) übrig bleibt?
>  
> sollte man vieleicht hier diese komplette
> aussagenverbindung mit einer
>  wahrheitstabelle darstellen?
>  
> kann mir jemand vieleicht einen kleinen Ansatz zur Hilfe
> geben?
>  
> Liebe Grüsse, und herzlichen Dank
>  
> SEAGATE
>  
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]