www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Aussagen zur Integration
Aussagen zur Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen zur Integration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:32 Do 27.05.2010
Autor: Franziska.Sun

Aufgabe
Wahr oder falsch?

1. Die Funktion f : [mm] \IR \to \IR [/mm] sei gegeben. Wenn f auf [a,b] riemannintegrierbar für alle [mm] -\infty [/mm] < a < b < [mm] \infty [/mm] ist, dann existiert das uneigentliche Integral [mm] \integral_{-\infty}^{\infty}{f(x) dx} [/mm]

2. Die Menge R der riemannintegrierbaren komplexen Funktionen auf [a,b] ist eine Algebra.

3. Sei g stetig mit g(x) : [a,b] [mm] \to \IR, [/mm] so ist G(x) = [mm] \integral_{a}^{x}{g(t) dt} [/mm] beliebig oft di erenzierbar.

Hallo,

ich bin neu hier und möchte an dieser Stelle alle erst einmal ganz herzlich Grüßen!

Bei der obigen Aufgabe habe ich mir bisher folgendes überlegt:

1. FALSCH. Als Gegenbeispiel habe ich  f(x) = x betrachtet. Dann gilt der erste Teil der Aussage, aber das angegebene uneigentliche Integral existiert nicht.
2. WAHR. Um eine Algebra zu sein, muss die Menge R abgeschlossen unter Addition, Multiplikation und Multiplikation mit einer komplexen Zahl sein. Das ist der Fall.
3. Da bin ich mir unsicher. Mir fällt spontan kein Gegenspeil und auch keine Begründung ein.

Es wäre sehr nett von Euch, mir zu helfen. Sind 1. & 2. richtig? Was gilt für Aussage Nr. 3?

Liebe Grüße
Franziska

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Aussagen zur Integration: zu 3)
Status: (Antwort) fertig Status 
Datum: 00:13 Fr 28.05.2010
Autor: Marcel

Hallo,

> 3. Sei g stetig mit g(x) : [a,b] [mm]\to \IR,[/mm] so ist G(x) =
> [mm]\integral_{a}^{x}{g(t) dt}[/mm] beliebig oft di erenzierbar.
>  Hallo,
>  
> ich bin neu hier und möchte an dieser Stelle alle erst
> einmal ganz herzlich Grüßen!
>  
> Bei der obigen Aufgabe habe ich mir bisher folgendes
> überlegt:
>  
> 1. FALSCH. Als Gegenbeispiel habe ich  f(x) = x betrachtet.
> Dann gilt der erste Teil der Aussage, aber das angegebene
> uneigentliche Integral existiert nicht.
>  2. WAHR. Um eine Algebra zu sein, muss die Menge R
> abgeschlossen unter Addition, Multiplikation und
> Multiplikation mit einer komplexen Zahl sein. Das ist der
> Fall.
>  3. Da bin ich mir unsicher. Mir fällt spontan kein
> Gegenspeil und auch keine Begründung ein.
>  
> Es wäre sehr nett von Euch, mir zu helfen. Sind 1. & 2.
> richtig? Was gilt für Aussage Nr. 3?
>  
> Liebe Grüße
>  Franziska

vorweg: Ich habe über die ersten beiden Aufgaben nicht viel nachgedacht, aber es sieht - denke ich - ganz vernünftig aus.

Zur 3en Aufgabe:
Betrachte (die stetige Funktion) $g(x)=|x|$ auf [mm] $[a,b]=[-1,1]\,.$ [/mm] Hier ist
[mm] $$G(x)=\begin{cases} \frac{-x^2}{2}+\frac{1}{2}, & \mbox{für } -1 \le x \le 0 \\ \frac{x^2}{2}+\frac{1}{2}, & \mbox{für } 0 \le x \le 1 \end{cases}\,,$$ [/mm]
und klar ist auch $G'(x)=g(x)$ auf [mm] $[-1,1]\,.$ [/mm] Aber was ist mit $G''(0)=g'(0)$? (Existenz?)

Beste Grüße,
Marcel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]