Aussagen wahr oder falsch < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:39 Mi 01.04.2009 | Autor: | hilado |
Aufgabe | Welche der folgenden Aussagen sind wahr, welche nicht wahr? Geben Sie entweder eine kurze Begründung oder ein Gegenbeispiel (ohne Begründung). Es sei f : [mm] \IR [/mm] \ [mm] \left\{ 0 \right\} [/mm] -> [mm] \IR [/mm] eine Funktion und [mm] \limes_{x \to 0}f(x) [/mm] existiere nicht. Dann gilt:
a) f ist nicht beschränkt.
b) Für jede Nullfolge [mm] (x_n)_{n \in \IN} [/mm] in [mm] \IR [/mm] \ [mm] \left\{ 0 \right\} [/mm] gilt: Die Folge [mm] (f(x_n))_{n \in \IN} [/mm] hat keinen Grenzwert.
c) Es existiert eine Nullfolge [mm] (x_n)_{n \in \IN} [/mm] in [mm] \IR [/mm] \ [mm] \left\{ 0 \right\}, [/mm] so dass die Folge [mm] (f(x_n))_{n \in \IN} [/mm] keinen Grenzwert hat. |
Ich hab in ein paar Tagen Klausur und ich wollte ein wenig üben. Nun will ich mal wissen ob ich auf dem richtigen Weg bin oder auf dem falschen Dampfer. Hier also meine Lösungen:
a) Stimmt nicht. f(x) = [mm] (-1)^x [/mm] ist beschränkt, hat aber keinen Limes.
b) Stimmt, denn eine Nullfolge ist ja ein tendieren gegen null. Da die Nullfogle gegen null tendiert ist es als ob man auch beim Limes gegen null tendieren lässt. Da bei der Funktion kein Limes, sprich kein Grenzwert existiert, existiert er auch bei keiner Nullfogle.
c) Wie b.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:00 Mi 01.04.2009 | Autor: | leduart |
Hallo
1, deine fkt [mm] (-1)^x [/mm] ist nicht fuer alle x eine reell definierte Fkt. (was ist denn [mm] (-1)^{0,5}
[/mm]
Deine Antwort ist trotzdem richtig. nimm f(x)=sin(1/x) als Bsp.
b) deine Antwort ist falsch. es kann einzelne Folgen geben, so dass der GW existiert. du kannst eine fuer obige fkt finden.
c) wieder richtig. den GW ex. nicht heisst dass nicht fuer alle NF [mm] x_n f(x_n) [/mm] konv.
Gruss leduart
|
|
|
|