www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Aussagen
Aussagen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aussagen: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 03.12.2007
Autor: kibard

Aufgabe
Die folgenden Aussagen sind richtig oder nicht:

1. [mm] \forall [/mm] x,y [mm] \in \IR \exists n\in \IN [/mm] (ohne Null) : nx > y

2. [mm] \forall [/mm] x [mm] \in \IQ \exists [/mm] n [mm] \in \IN [/mm] (ohne Null) : n > x

3. [mm] \forall [/mm] x,y [mm] \in \IR [/mm] (positiven) [mm] \exists m\in \IN [/mm] (ohne Null) : my > x

Für Hilfe wäre ich sehr dankbar, also ich habe einfach mal versucht Zahlen aus dem jeweiligen Zahlenraum einzusetzen. dabei kam heraus:

1. müsste eigentlich richtig sein, denn für z.B. y= [mm] \bruch{2}{3}, [/mm] n=2 und x= [mm] \bruch{1}{2} [/mm] ergibt ja eingesetzt 2*1/2 = 1 > 2/3.
Aber es gibt sicher irgendeine Zahl, die nicht größer ist, nur allgemein formulieren kann ich das nicht.

2. hier ist es richtig, denn es gibt mindestens ein n aus  [mm] \IN [/mm] für das gilt, dass es größer ist als ein element aus [mm] \IQ? [/mm] Lieg ich da falsch?

3. nach meinen berechnungen ergibt das falsch, aber da bin ich mir nicht sicher.

Wie kann ich diese Aufgaben allgemeiner begründen. Ich kann ja nicht alle Zahlen ausprobieren.

Danke für jeden Tipp!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mo 03.12.2007
Autor: Martin243

Hallo,

1. Was ist, wenn $x<0<y$ gilt? Das geht nach der Definition von $x$ und $y$.

2. Es stimmt schon. Nur gibst du die Aussage einfach wieder. Du müsstest es schon begründen. Du weißt ja, dass alle rationalen Zahlen als Brüche darstellbar sind. Mit welcher Zahl musst du also einen Bruch multiplizieren, um eine ganze Zahl zu erhalten? Was musst du beachten, um eine natürliche Zahl zu erhalten? Was musst du beachten, damit die natürliche Zahl immer größer ist als x?

3. Ist das nicht so etwas Ähnliches wie 1.? Dort hast du ja gesagt, hier nein. Ich sehe das umgekehrt. Du kannst hier mal durch y teilen und überlegen, ob es eine reelle Zahl gibt, die größer ist als alle natürlichen Zahlen.


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]