www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Aufstellung von fkt.gl_3gr
Aufstellung von fkt.gl_3gr < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufstellung von fkt.gl_3gr: Fkt.gl aus Eigens. aufstellen
Status: (Frage) beantwortet Status 
Datum: 18:14 Sa 25.11.2006
Autor: honzer

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Eine ganzrationale Funktion 3. Grades besitzt den Wendepunkt W(-2;2) und die Nullstelle -4. Die Wendetangente schneidet die x-Achse bei -3.
ich komme zu folgendem Ansatz:
f(-2)=2
f''(-2)=0
f(-4)=0
f''(-3)=0
-8a+4b-2c+d=2
-12a+2b=0
-64a+16b-4c+d=0
-18a+2b=0
Dann komme ich auf a=0 usw.
Die Lösung heißt aber angeblich: [mm] -1/4x^3-3/2x^2-x+4 [/mm]
Wo liegt mein Fehler?
danke


        
Bezug
Aufstellung von fkt.gl_3gr: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Sa 25.11.2006
Autor: hase-hh

moin,

du suchst die funktion

[mm] f(x)=ax^3 [/mm] + [mm] bx^2 [/mm] +cx + d

richtig:

f(-4)=0

0= [mm] a*(-4)^3 [/mm] + [mm] b*(-4)^2 [/mm] +c*(-4) +d (1. Gleichung)

0=-64a +16b -4c +d

f(-2)=2

2= [mm] a*(-2)^3 [/mm] + [mm] b*(-2)^2 [/mm] +c*(-2) +d

2= -8a +4b -2c + d  (2. Gleichung)

[mm] f'(x)=3ax^2 [/mm] +2bx + c  für später

f''(x)=6ax +2b

f''(-2)=0

0=-12a +2b  (3. Gleichung)

wendetangente ermitteln

[mm] t_{w}=m_{t}x [/mm] + n

[mm] m_{t}= [/mm] f'(-2)

[mm] f'(-2)=3a*(-2)^2 [/mm] +2b*(-2) +c

f'(-2)=12a -4b +c

in tangentengleichung einsetzen...

[mm] t_{w}=(12a [/mm] -4b +c)*x + n

am punkt  -3 schneidet die wendetangente die x-achse

d.h.

0=(12a -4b +c)*(-3) + n

n= 36a -12b +3c

[mm] t_{w}=12ax [/mm] -4bx +cx + 36a -12b +3c

2 = 12a(-2) -4b*(-2) +c*(-2) + 36a -12b +3c

2=-24a +8b -2c +36a -12b +3c

2=12a -4b +c  (4. Gleichung)

jetzt:

2. gleichung: -12a+2b=0  =>  b=6a

1. gleichung: 2=12a -4*6a +c  => c=12a +2

3. gleichung: 2=-8a +4*6a -2*(12a+2) +d => d= 8a +6

4. gleichung: 0=-64a +16*6a -4*(12a+2) +8a+6

=> a=- [mm] \bruch{1}{4} [/mm]
b= - [mm] \bruch{3}{2} [/mm]
c=-1
d=4

f(x)= [mm] -\bruch{1}{4}x^3 -\bruch{3}{2}x^2 [/mm] -x +4

gruß
wolfgang



























Bezug
                
Bezug
Aufstellung von fkt.gl_3gr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:12 Sa 25.11.2006
Autor: honzer

danke für die Lösung
gibt es irgendein Buch, in dem solche Aufgaben und Lösungen sind. Vor allem, in dem die Vorgehensweise bei diesen Eigenschaften erläutert wird?


Bezug
                        
Bezug
Aufstellung von fkt.gl_3gr: MatheBank!
Status: (Antwort) fertig Status 
Datum: 10:43 So 26.11.2006
Autor: informix

Hallo honzer,

> danke für die Lösung
>  gibt es irgendein Buch, in dem solche Aufgaben und
> Lösungen sind. Vor allem, in dem die Vorgehensweise bei
> diesen Eigenschaften erläutert wird?
>  

[guckstduhier] MBSteckbriefaufgaben in unserer MBMatheBank

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]