www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Aufspannender Baum
Aufspannender Baum < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aufspannender Baum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Di 10.05.2011
Autor: rainman_do

Aufgabe
Beweisen Sie: Wenn alle Kantengewichte in einem zusammenhängenden, gewichteten Graphen $G=(V,E)$ mit Kostenfunktion $c: E [mm] \rightarrow \IR$ [/mm] verschieden sind, dann ist der aufspannende Baum mit minimalen Gesamtkosten eindeutig.

Hallo,

hätte vielleicht jemand einen Ansatz für mich, ich weiß einfach nicht wie ich anfangen soll...ich hatte es mal mit einem Widerspruch versucht...angenommen es gibt einen weiteren aufspannenden Baum mit minimalen Gesamtkosten, dann....aber was ist dann? :)

vielen Dank schon mal im voraus

        
Bezug
Aufspannender Baum: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Mi 11.05.2011
Autor: SEcki


> hätte vielleicht jemand einen Ansatz für mich, ich weiß
> einfach nicht wie ich anfangen soll...ich hatte es mal mit
> einem Widerspruch versucht...angenommen es gibt einen
> weiteren aufspannenden Baum mit minimalen Gesamtkosten,
> dann....aber was ist dann? :)

Ordne die Kanten der beiden Bäume nach ihrem gewicht. Dann gibt es eine erste Stelle, an der die Gewichte differieren. Füge jetzt die eine Kante zum andren Baum hinzu und finde einen Widerspruch.

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]